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1. Introduction

GLAD is an advanced physical optics analysis code which may be applied to a wide variety of optical
modeling applications. With GLAD, the user is able to model both simple systems and highly complicated,
multiple laser configurations. The code is designed to analyze beam trains and laser devices including the
effects of diffraction, active media, apertures, lenses and mirrors, and aberration. GLAD has a global
coordinate system that allows complex systems to be described and which enables components to be
arbitrarily located and rotated.

1.1 Documentation
GLAD is documented in several volumes:
• Introduction to GLAD
• GLAD Theoretical Discussion
• GLAD Command Descriptions
• GLAD Examples
This volume describes the theoretical basis and numerical methods used in GLAD. Detailed explanation

of the commands is contained in GLAD Command Descriptions as well as command formats and
installation instructions. The volume of examples gives numerous applications of GLAD to illustrate use of
the code. Electronic versions of all manuals are on the distribution CD ROM. The most current version of
the manuals may be downloaded from www.aor.com.

1.2 Availability of GLAD
GLAD is copyrighted software which is available under license agreement with AOR. Questions

regarding GLAD may be addressed to:
Applied Optics Research
1087 Lewis River Rd. #217
Woodland, WA, 98674 USA
tel: 360 225 9718, fax: 360 225 0347
email: glad@aor.com, http://www.aor.com

1.3 Publications and Presentations using GLAD  
1. Lawrence, G., and P. Wolfe, “Application of the LOTS Computer Code to Laser Fusion Systems,” Los

Alamos Scientific Laboratory Conference on Optics'79.
2. Viswanathan, V., I. Liberman, G. Lawrence, and B. Seery, “Optical Analysis of Laser Systems Using

Interferometry,” Appl. Opt., 19, 1870 (1978).
3. Wolfe, P., A. Saxman, and G. Lawrence, “LOTS Analysis of Optical Diffraction in Antares,” Los

Alamos Scientific Laboratory Conference on Optics'79.
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4. Lawrence, G., “Optical Performance Analysis of CO2 Laser Fusion Systems,” doctoral dissertation,
University of Arizona, (1980).

5. Lawrence, G., and C. Barnard, “Under sampling Versus Aliasing Errors in Numerical Evaluations
Diffraction Patterns,” Los Alamos Conference on Optics '81.

6. Boye, C., W. Swantner, and G. Lawrence, “A Study of Spatial Filtering Using LOTS MCI,” SPIE
Conference, August 24, 1982.

7. Barnard, C. and G. Lawrence, “Physical Optics Modeling with Multiple Lasers,” Los Alamos
Conference on Optics '83.

8. Lawrence, G., C. Barnard, and V. Viswanathan, “Global Coordinates and Exact Aberration
Calculations Applied to Physical Optics Modeling of Complex Optical Systems,” SPIE Proc. Vol. 642
(1986).

9. Knapp C., V. Viswanathan, J. Bender, Q. Appert, G. Lawrence, and C. Barnard, “Analysis of Free
Electron Laser Systems with Grazing Incidence Optics,” SPIE Proc. Vol. 642 (1986).

10. Lawrence, G., “Optical System Analysis with Physical Optics Codes,” SPIE Proc. 766–18 (1987).
11. Lange, M. and G. Lawrence, “Numerical developments of diffracting Raman conversions,” SPIE

Proc. 739–45 (1987).
12. Lawrence, G. and P. Cronkite, “Physical optics analysis of the focusing grating coupler optical data

head,” Fourth Topical Meeting, Optical Data Storage, March 1987.
13. Lawrence, G. and P. Cronkite, “Physical optics analysis of the focusing grating coupler optical data

head,” Appl. Opt., 27, 672–678 (1988).
14. Scholl, M., A. Khatib, G. N. Lawrence, “Optical Modeling of a Space Relay Experiment,” OE Lase

'88.
15. Lawrence, G., M. S. Scholl, A. Khatib, “Modeling of Dynamic Effects in Propagation of a Low Power

Laser Beam,” OE Lase '88.
16. Lawrence, G., M. Wang, S H Hwang, “Optical Performance of a Waveguide Grating Imaging Device,”

SPIE Proc. 965–06 (1988).
17. Lawrence G., B. Herman, and A. Ben David, “Effects of Atmospheric Scattering on Irradiance

Distribution of a Downward Propagating Laser Beam,” SPIE Pro. 965–15 (1988).
18. Eckhardt, S., G. Lawrence, J. Burke, “Diffractive and Aberration Effects of Propagation through a

Refractive Surface,” SPIE Proc. 1045–28 (1989).
19. Lawrence, G., “Polarization Modeling in Physical Optics Analysis,” SPIE 33rd Annual Symposium,

August 1989, 1166–08.
20. Hwang, S H and G. Lawrence, “Physical Optics Analysis of Gradient Index Optics,” SPIE 33rd

Annual Symposium, August 1989, 1168–40.
21. Daniel R. Neal, William C. Sweatt and George N. Lawrence, “Software models complex laser

systems,” Laser Focus World, p59, June 1990.
22. G. Lawrence, “Physical Optics in Optical Design,” SPIE Proc. Vol. 1354 (1990).
23. G. Lawrence, “Advances in optics software,” Optics and Phtonics News, 31–34, Sep. (1990).
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24. G. Lawrence and K. Moore, “Integrating Geometrical and Physical Optics,” SPIE Proc. 1415-33
(1991).

25. M. S. Scholl and G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 39
(3), 271–278 (1990).

26. Y. Lin, T. Kessler, G. Lawrence, “Raman scattering in air: A four dimensional system analysis,” SPIE
Proc. Vol. 1625.

27. G. Lawrence, “Computer aided Optimization of Laser Systems,” SPIE Proc. Vol. 1625.
28. George N. Lawrence, “Optical Modeling,” Applied Optics and Optical Engineering, Vol. XI, Eds. R.

Shannon and J. Wyant, Academic Press, 125-200, (1992).
29. G. Lawrence, “How to select lens design software,” Laser Focus World, 111–116, July, 1993.
30. Y. Lin, T. J. Kesler, J. J. Armstrong, and G. Lawrence, “Laser system power balance effects from

stimulated rotational Raman scattering in air,” SPIE Proc. Vol. 1870, 14–25 (1993).
31. G. Lawrence, “Using Rules of Thumb in the Design of Physical Optics Systems,” Conference on

Optical Photonics, Palm Springs, March, 1993.
32. Weng. W. Chow, William. C. Sweatt, George N. Lawrence, Tanya E. Jewell, “Physical Optics

Modeling of Soft X ray Projection Lithography (SXPL) Imaging Experiments,” OSA Technical
Digest, Conf. on Soft X ray Projection Lithography, May 10 22, Monterrey, 1993.

33. G. Lawrence and T. Baer, “Characterization of Laser Beam Quality by M2”, SPIE Proc. Vol. 2117, Jan.
1994.

34. G. Lawrence, “Proposed international standard for laser beam quality falls short,” Laser Focus World,
p. 109–114, July, 1994.

35. M. S. Scholl, G. N. Lawrence, “Adaptive optics for in orbit aberration correction—feasibility,” Appl.
Opt., 34 , 7295–7301 (1995).

36. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of Continuous Surface relief Phase Plates by
Surface based Simulated Annealing to Achieve Control of Focal Plane Irradiance,” Opt. Lett. 21, 1703
–1705 (1996).

37. Y. Lin, T. J. Kessler and G. N. Lawrence, “Distributed Phase Plate for Supergaussian Focal Plane
Irradiance Profiles with Low Scattering Loss,” Opt. Lett. 20, 764–766 (1995).

38. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Raman Scattering in Air: A Four Dimensional Analysis,”
Appl. Opt. 33, 4781–4791 (1994).

39. G. Lawrence, “When Fourier methods fail—diffraction propagation through thick elements and tilted
surfaces,” Presented to Workshop on Asymptotic and Approximate Methods in Optical Modeling, The
Rochester Theory Center for Optical Science and Engineering, Rochester, NY June 12–13, 1997.

40. Ying Lin and Jesse Buck, “Numerical modeling of the excimer beam,” SPIE Vol. 3677, 700–710
(1999).

41. G. Lawrence, “Integrating geometrical and physical optics with the lensgroup operator method,” SPIE
Proc. 3780–06 (2000).
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2. Background

As the complexity and variety of laser systems has expanded over the years, the need for powerful
analytical methods has become increasingly important. Optical engineers and scientists need to be able to
accurately calculate performance in order to optimize designs and to determine system tolerances.
Numerical analysis is quicker and less expensive than laboratory experiments and also serves as an
educational tool. The optical engineer or scientist can determine the end to end performance of a complex
device based on the characteristics of the lenses and mirrors, propagation distances, apertures, aberrations,
laser gain, and other effects. The definition of the system components can be very detailed, including exact
aperture shapes and the accurate aberration determined from interferometry or other means of measurement.
A relatively complete description of the laser beam can be determined by the intensity and phase profiles.
This information can be used to find the total power, the peak power, wavefront quality, wavefront variance,
Strehl ratio, and properties of the focused beam.

Originally, optical modeling was used to understand relatively simple laser systems and beam trains.
More recently much more complex systems have been analyzed which include atmospheric aberration,
adaptive optics, phased arrays, nonlinear optics, etc. Optical modeling is a highly complex field and this
discussion can only begin to touch on the important areas of the subject. The most critical and difficult
aspect of optical modeling is the general treatment of diffraction propagation in homogeneous media and in
systems of lenses, mirrors, and inhomogeneous media. A complete and consistent mathematical description
and set of algorithms are presented in this article that can treat all types of systems to the accuracy of small
angle, scalar Fresnel diffraction theory. Split-step methods for treating nonlinear gain and aberration are
described. Optical modeling is a relatively new field of optics going back to the earliest days of the
development of the laser. Unlike geometrical optics which had a noble history before the development of
the computer, optical modeling, with its intensive calculations and large memory requirements is a child of
the computer age. Computers operating in the megaflop range (millions of floating point operations) are
now readily affordable and commonly available and there seems to be no diminution of the rate of
improvement of the computer hardware. A few years ago, only major organizations could afford the
computer equipment and the staff of experts to develop and operate physical optics codes. The development
of user oriented programs, has made it possible for the optical scientist or engineer to successfully perform
complex calculations without being a code specialist. 

Prior to the advent of lasers, optical analysis consisted largely of geometrical ray tracing for the design
of photographic systems. Diffraction analysis was applied to various types of apertures from the turn of the
century but generally not to the analysis of systems. The laser was the stimulus for physical optics
calculations. In geometrical analysis, the light is represented by a set of rays which are normal to the
wavefront as shown in Fig 2.1. For short propagation lengths such as are encountered in a common
photographic lens, the diffraction effects are small and localized to the edge of the beam. For this type of
problem, rays do a good job of determining the aberrations of the system and a reasonably good job of
determining the intensity variations. For a conventional optical system the rays enable us to calculate the
aberrations. These aberrations may be used to determine the pupil function and a simple far field diffraction
analysis may be made or, if the system is not diffraction-limited, the rays may be traced to the image plane
Jump to:  Commands
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14 GLAD Theory Manual
and the geometric image size may be used as a measure of performance. Associating equal energy with each
ray, we can get a rough estimate of the energy density but this method breaks down the region of the focus.

A simple spatial filter is commonly used in many laser systems. Ray optics can approximately calculate
the image at the focal point where the pinhole filter is placed. Ray optics is unable to predict removal of the
phase aberrations by the spatial filtering and smoothing of the intensity distribution. Figure 2.2 shows two
lenses and a pinhole aperture at the intermediate focus which acts as a spatial filter. This simple device is
used in many laser systems to remove the aberrations and to smooth out intensity variations. Using
geometrical analysis, we may be able to approximately determine the image size but we cannot determine
the reduction of aberrations and the change in the intensity distribution to be found in the expanded beam
after the spatial filter. The spatial filter can not be analyzed by geometrical analysis. Physical optics analysis
describes the optical beam by a complex amplitude function, describing the transverse beam distribution.
The complex amplitude includes both the intensity and phase information of the beam at one axial position.
This information can be modeled in the computer by a complex two dimensional array where each point of
the array corresponds to a point on the beam. 

The earliest work in resonator analysis codes was done for optical communications in the 1960's by Fox
and Li[1]. The military interest in high energy lasers stimulated intense development of physical optics
modeling codes in the mid 1970's. The work by Siegman and Sziklas in 1974 and 1975 studied gas dynamic
lasers including diffraction, the active gain medium, apertures, and aberration. The first paper by Siegman

Fig. 2.1. Representation of an optical beam by rays.The rays convey optical path differences errors and 
slight differences in ray direction indicate ray aberrations.

Fig. 2.2. A simple spatial filter is commonly used in many laser systems. Rays optics can approximately calculate 
the image at the focal point where the pinhole filter is placed. Ray optic is unable to predict removal of the phase 
aberrations by the spatial filter and smoothing of the intensity distribution.
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and Sziklas used an Hermite Gaussian expansion for propagation [2]. The second paper by Sziklas and
Siegman used a fast Fourier transform (FFT) method for propagation [3]. A third method based on finite
difference propagation—a direct solution to the differential equation of diffraction—was used by Rench and
Chester in 1974 [4]. Over time, the FFT method has become the mainstay of optical propagation codes, as
much for its modest and well understood sensitivity to error as for its computational efficiency for many
types of problems.

2.1 Review of Physical Optics Modeling
GLAD is designed to calculate the performance of laser systems and other optical systems which have

a well defined direction of propagation. GLAD represents the optical beam by the complex amplitude of the
optical wavefront. This is distinct from geometrical optics codes which represent the optical beam by rays.
Geometrical codes are very useful when near-field diffraction and gain are not important and where the
transverse intensity distribution of the beam is either constant or some simple function. 

GLAD is designed to treat entire systems from end to end. A full end-to-end system analysis code must
necessarily simplify to some extent the components and physics to keep development costs reasonable and
to achieve satisfactory run times. In many cases, specialty codes are developed to address in greater detail
components or processes of particular interest. Knowledge gained from specialty codes may be used to form
simpler, more efficient models for use in end to end modeling. 

2.1.1 Typical Types of Analysis
To illustrate application of the code, consider the schematic shown in Figure 2.3. The configuration does

not represent any particular system, although it has some resemblance to a Raman amplifier. Many of the
important features of laser systems are present. Beam 1 (red) is shown starting with a quasi-gaussian
distribution. GLAD allows several different ways of defining the starting distribution. GLAD assumes no
particular symmetry to the optical distribution. Also, the distribution may be decentered. 

Beam 1 is shown with an aberrated element. A large variety of types of aberration may be used in
GLAD. The lens in Beam 1 brings the light to a focus. GLAD may be used to calculate the distribution at
any point in the collimated, converging, or diverging part of the beam. An aperture at the focus of the lens

Fig. 2.3. A representative physical optics system.
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16 GLAD Theory Manual
acts to spatially filter the distribution to remove some of the aberration. The second lens recollimates the
beam. 

Beam 2 (blue) is being generated by a laser. GLAD can model most types of stable and unstable
resonators and a variety of gain media. Beam 2 is added to Beam 1 by a beam combiner. The combination
may be done coherently or incoherently. Coherent addition is possible only for beams having nearly
identical wavelengths. The combined beams interact in a second medium. This might be a Raman scattering
cell. 

After the two photon process, a cylindrical lens is shown. Glad may be used to model spherical,
cylindrical, or toroidal optical elements. GLAD is designed to be very modular. With basic modules such as
diffraction steps, lenses, mirrors, apertures, beam splitters, beam combiners, and gain media; a large variety
of optical systems may be analyzed. 

2.1.2 Discussion of Three Dimensional Modeling
GLAD was developed as a three dimensional code - modeling two transverse dimensions by the two

dimensional computer arrays and the axial dimension by successive calculations. In general, a four
dimensional solution may be required because of temporal dependence of the optical beam. Many systems
may be approximated by steady state solution, because the temporal pulse width is longer than the time
constants of all processes in the system. GLAD is well suited to analyze this type of problem. Other systems
have short temporal pulse widths. If the pulse width is shorter than the time constants of all the processes in
the system, then the exact waveform of the pulse does not play a role: only the integrated effect need be used
in modeling. The beam may be represented by fluence in terms of joules per square centimeter. 

With the increasing availability of very fast workstations, time dependent, three dimensional problems
may be solved in reasonable time. Example 27 illustrates examples of jitter including the pulse to pulse
variation and time integration of the energy. Example 56 illustrates the spectral performance of a Fabry
Perot cavity. 

The most difficult problems are ones where the temporal pulse shape plays an important role. GLAD
has been applied to a variety of transient, three dimensional problems. Example 79 illustrates transient
Raman analysis and Ex. 80 describes a time dependent analysis of a Q switched laser. Partial coherent
effects are shown in Ex. 83.

2.2 References
1. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell System Technical Journal, Vol.

46, 453 (1961).

2. A. E. Siegman, “Hermite Gaussian Functions of Complex Argument as Optical Beam
Eigenfunctions,” JOSA Vol. 63, 1093 (1973). 

3. E. A. Sziklas and A. E. Siegman, “Diffraction calculations using fast Fourier transform methods,”
Proc. IEEE 62, 410–412 (1974). 

4. D. B. Rench and Chester, “Three dimensional unstable resonators with laser medium,” Appl. Opt. 13,
2546–2561 (1974). 
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3. Basic Theory of Propagation

GLAD is designed to allow the user to perform optical calculation by entering the optical configuration
information and by defining the starting optical beam parameters. The code then performs the optical
transformations to simulate the various components and phenomena in the device. The code can be operated
with only a rudimentary understanding of propagation theory. However, as with any other scientific or
engineering field, a good understanding of the analytical tools leads to greater insight into the problems
being studied.

3.1 Representation of the Optical Beams
The optical beam may be represented as a three dimensional time varying vector field,

, (3.1)

where boldface indicates vector quantities.
Optical beams with convergence cones of f number greater than about 1.5 are well described without

the  term. GLAD uses only the  and  terms. The  and  terms represent orthogonal states of
polarization, with separate computer arrays for each polarization state as shown in Fig. 3.1. By defining the
relative amplitudes and phase differences between  and , various states of polarization can be defined:
linear, circular, and general elliptical polarizations. Where different polarization states are not required,
GLAD performs calculations only on .

GLAD defines two dimensional computer arrays that represent the transverse distribution of the optical
beam at a specific point. The representation is therefore

. (3.2)

Fig. 3.1. Orthogonal polarization fields,  and .

1 α⁄
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18 GLAD Theory Manual
The semicolons indicate variables which are not incorporated into the computer storage arrays, but which
are retained as separate parameters in the code. The dependency of the optical beam on time may be
neglected in many cases; either because the optical beam is so slowly varying that only the steady state
solution is needed or because the pulse is so short that all physical processes in the system see only the
integrated effects of the optical pulse. In the steady state solution, temporal dependence can be removed and
only the z dependence retained. A single computer array is sufficient (two arrays if polarization effects are
included). In the case where the pulse is very short, the E(x,y;z;t) term may be replaced by an integrated
amplitude term such that

(3.3)

and the phase of  represents the optical path associated with the  point. The irradiance,
or fluence values for a pulsed system, are defined to be

, (3.4)

where  is the complex conjugate of , and  is the irradiance. Note that  and  are
amplitudes of orthogonal polarization states.

Where the temporal variation of the optical field must be taken into consideration, the immediate
question is whether the pulse shape is constant over the transverse dimensions of the field. If so, the
problems are separable and the pulse shape may be moved into kinetics routines. If not, then multiple arrays
must be defined, one for each temporal section to be studied. The representation in discrete complex
amplitude arrays is

. (3.5)

A uniform separation in time of  is assumed. 
Alternately, the expression may be expanded in frequency with each array representing a distinct

wavelength

. (3.6)

GLAD allows up to 128 optical beams to be used simultaneously. Since computational burden is
directly proportional to the number of beams, the fewest possible should be used. In particular, multiple
longitudinal modes will generally have the same transverse structure. The spectral bandwidth effects may
be approximated by adroit choice of kinetics parameters.

Problems such as stimulated Raman scattering, stimulated Brillouin scattering, second harmonic
generation, and nonlinear optical phase conjugation require separate arrays for the constituent beams.
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3.2 Derivation of the Fundamental Propagation Equations
The evolution of the optical fields is a function of diffraction and the gain and loss mechanisms in the

beam train. For the sake of completeness, we begin with Maxwell's equations as they apply to a laser
medium or free space propagation. We then show the simplifying assumptions needed to get the
inhomogeneous wave equation which will be solved by numerical techniques. For a thorough treatment of
the subject the reader is referred to one of the many excellent texts on laser physics such as Sargent, Scully,
and Lamb [1].

The equations derived pertain to a laser field in a weakly perturbing medium. In MKS units the
equations are

, (3.7)

, (3.8)

, (3.9)

, (3.10)

, (3.11)

, (3.12)

, (3.13)

where  is the electric field,  is the magnetic induction,  is the electric displacement,  is the magnetic
field intensity,  is the electric permittivity of free space,  is the magnetic permeability of the medium,

 is the conductivity of the medium, and  is the charge density.
Taking the time derivative of Eq. 3.8 and substituting it into the curl of Eq. 3.7, we have

, (3.14)

. (3.15)

(3.16)

In Eq. 3.16, it has been assumed that  and  are negligible. This is a good assumption for many
laser media. Equation 3.15 can be simplified using Eq. 3.16 to under the condition ,
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. (3.17)

The beams to be considered in GLAD will have a well defined direction of propagation along some axis,
which we may define as the z axis. Diverging or converging beams may be treated as collimated beams with
the base radius of curvature and scaling properties treated separately, as will be discussed below.

In Eq. 3.17, both  and  are rapidly varying in time and along the z axis. Our primary interest is in
the slowly varying envelopes for both quantities. This can be done by representing the two vectors as
summations of the frequencies composing the optical beam.

A specific frequency component has the form

, (3.18)

where  and .
The term  is slowly varying in time. Similarly, the polarization term may be separated into its slowly

varying part and a rapidly varying exponential. The polarization term commonly takes the form

. (3.19)

For nonlinear optical effects, the medium polarization takes the form

. (3.20)

For all cases of practical interest,  and . The slowly varying polarization term, , can
be used for each temporal frequency component of ,

. (3.21)

3.3 Diffraction Propagation
For three dimensional calculations, the representation of Eq. (3.2) is used. It is more traditional to use

E for the electric field for E&M calculations but for the remainder of this discussion lower case “a” will be
used for the complex amplitude, which is related to irradiance by , where  is the
speed of light in vacuum and . The most common codes use scalar Fresnel diffraction theory
where the  and  terms represent orthogonal states of polarization, with separate computer arrays for
each polarization state. The representation is therefore

, (3.22)
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where the semicolons indicate variables which are not incorporated into the computer storage arrays, but
which are retained as separate parameters in the code. By defining the relative amplitudes and phase
differences between  and , various states of polarization can be defined: linear, circular, and general
elliptical polarizations. Where different polarization states are not required, calculations may be performed
using only on one array. Most physical optics code defines two dimensional computer arrays that represent
the transverse distribution of the optical beam at a specific axial point. 

The majority of work has been in development of time dependent, one dimensional codes for detailed
analysis of nonlinear optical effects or steady state, three dimensional codes for analysis of complex optical
systems. Full time dependent, three dimensional models (true four dimensional models) are practical on
machines of the 10 megaflop to 100 megaflop machines but are only in the early stages of development.
Development of full four dimensional codes must draw upon the time independent, three dimensional
methods, which are the subject of this article.

The dependency of the optical beam on time may be neglected in many cases; either because the optical
beam is so slowly varying that only the steady state solution is needed or because the pulse is so short that
all physical processes in the system see only the integrated effects of the optical pulse. In either case, we can
drop the time dependence,

. (3.23)

Many problems require multiple optical beams to be used simultaneously. Since computational burden
is directly proportional to the number of beams, the fewest possible should be used. Problems such as
stimulated Raman scattering, stimulated Brillouin scattering, second harmonic generation, and nonlinear
optical phase conjugation require separate arrays for the constituent beams.

3.4 The Split Step Method
The evolution of the optical fields is a function of diffraction and the gain and loss mechanisms in the

beam train. For a detailed derivation from Maxwell's equations the reader is referred to one of the many
excellent texts on laser physics such as Sargent, Scully, and Lamb[1]. Among the simplifications are the
rotating wave approximation and the assumption that second derivative of  is slowly varying along the
axis, i.e.,

. (3.24)

For many lasers, the differential equation for the optical field may be written,

, (3.25)

ignoring the time variation of  and dropping . For nonlinear optical effects, the medium polarization
may take a more complex form, according to Bloembergen[2],
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, (3.26)

where the superscripts indicate the linear and various higher order nonlinear susceptibilities. For example
the polarization term for four wave mixing takes the form,

. (3.27)

For linear media, Eq. (3.19) then takes the form,

, (3.28)

where  is the index of refraction in the medium. Equation (3.28) describes the propagation of a laser beam
in gain media. The first term on the right is the diffraction term; the second is the effect of the medium. In
general this equation can not be solved in closed form. Numerical methods are well understood for solving
each of the terms on the right if taken separately (Hardin and Tappert[3]).

The conclusion to be drawn from this derivation is that for small steps we can separate the effects of
diffraction and kinetics. We can develop our theory for these two areas completely separately and we can
perform the calculation in serial fashion where we alternate the two types of calculation. It is the nonlinear
aspect of the gain that requires the iterative treatment. Linear gain merely scales the distribution.

In applying a finite difference solution to Eq. (3.28), the field after a small propagation z is given by

. (3.29)

For small steps, the term  may be separated into a diffraction, and a medium term,

, (3.30)

 and . (3.31)

In practice the preferred method of solution of Eq. (3.31) is by FFT, but the concept of taking short steps
to limit the change due to diffraction still holds. The solution of Eq. (3.31) is performed in separate steps as
shown in Fig. 3.2. 

Even when the medium has nonlinear gain or absorption, the effect of the nonlinearities on diffraction
effects is often relatively modest. We can reduce the errors to an acceptable level by taking short steps
through the medium. This method is often referred to as the split step method. Figure 3.3 illustrates
schematically how the same distance may be traversed by different split step choices. 

The results of the calculations are shown in Figures 3.4.a–3.4d: diffraction without gain (Fig. 3.4.a), one
step (Fig. 3.4b), two steps (Fig. 3.4c), and four steps (Fig. 3.4d). This illustrates qualitatively that the errors
of inadequate axial sampling are often not too severe. It is, therefore, a workable procedure to break the
calculation into a modest number of steps and to cover the distance twice: once considering only diffraction
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Fig. 3.2. Flow chart for diffraction and kinetics routines. Diffraction calculations assume no gain and may be done 
by FFT's or finite-difference calculations. Kinetics calculations assume no diffraction. The split-step procedure gives 
a good approximation for a small step and may be repeated to accomplish arbitrarily long distances.

Fig. 3.3. Split-step methods shown to cover the same distance for the four cases shown in a-d. (a) shows diffraction 
without gain, (b) shows one split-step of diffraction and gain; (c) shows two split-steps; and (d) shows four split-
steps. (a)-(d) correspond to Figs. 3.4.a–3.4d.
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and the second time considering only gain. We can always increase the number of steps and see if the
calculations change. Later we shall consider somewhat more quantitative means of determining the number
of steps required. 

3.5 Angular Spectrum Propagation
In homogeneous media, plane waves retain their identity as plane waves during propagation. Plane

waves are, therefore, eigenfunctions of diffraction propagation. The eigenvalues are , where 
is the vector wavenumber and  is the reference direction, commonly the z axis. The magnitude of  is

, where  is the wavelength in the medium, , where  is the wavelength in vacuum. The
equations will be developed in terms of the wavelength in the medium.

One very effective method of calculating diffraction propagation of an arbitrary complex amplitude
distribution is to decompose the distribution into a summation of plane waves, propagate the plane waves

Fig. 3.4.a. Diffraction propagation of a beam with only 
linear gain.

Fig. 3.4b.  Diffraction and nonlinear gain (one step). The 
diffraction ripples are strongly saturated.

Fig. 3.4c. Diffraction and nonlinear gain (two steps). 
The saturation is much less than putting all the 
saturation at the end.

Fig. 3.4d. Diffraction and nonlinear gain (four 
steps). Using four steps is almost the same as two 
steps.

jk r⋅( )exp k
r k

2π λ⁄ λ λ λ0 n⁄= λ0
Jump to: ,  Commands  Examples



25
individually using the eigenvalues, and resume the plane waves. This procedure is called the angular
spectrum decomposition method [4].

We can compare the geometrical representation of the wavefront and propagation with the complex
amplitude and angular spectrum propagation. Geometrical rays are normals to the wavefront. We use
enough rays to sample the wavefront thoroughly. We might for example trace an optical system using
hundreds of rays. The ray direction is defined by wave number unit vector, , with direction perpendicular
to the wavefront. For free space propagation of along the ray a distance q, the ray position vector is
transformed,

. (3.32)

Propagation of a plane wave is very similar to geometric propagation. A plane wave of amplitude 
is propagated by the equation,

. (3.33)

Geometrical and physical optics propagations are illustrated schematically in Figs. 3.5.a and 3.5b. The
propagation distance depends on the direction of the plane wave. Evaluating the phase along the z axis, we
have 

, (3.34)

where , , and  are the components of the wavenumber vector.

. (3.35)

We can make the approximation (Goodman[4])

Fig. 3.5.a. Geometrical propagation. Fig. 3.5b. Physical optics propagation.
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. (3.36)

where  and  are the direction cosines in the transverse direction. Equation (3.36) is the
transfer function for a plane wave in homogeneous, isotropic media. The term  is generally
dropped although it may be important in phased array and coupled resonator studies.

We can associate the direction cosines with spatial frequency variables  and ,

 and , (3.37)

and the transfer function for a plane wave described in terms of spatial frequency variables is

, (3.38)

where .
Any well behaved function may be written as a summation of spatial frequency components,

, (3.39)

and from Eq. (3.38)

. (3.40)

Harvey has extended the scalar theory to work at large angle by taking good advantage of a direction
cosine (rather than a small angle) development[5–6].

Using Eq. (3.40) propagation in homogeneous media can be written in the operator notation:

, (3.41)

where,

. (3.42)

is the transfer function of diffraction propagation. The forward and inverse Fourier transforms,  and
 are defined by, 

, (3.43)
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Propagation may be written as a convolution by taking the Fourier transform of Eq. (3.40) [7].

, (3.45)

. (3.46)

The quantity  is the point spread function (PSF) or impulse response function. Phase factors
which are constant over the field have been dropped. The quadratic phase factor of Eq. (3.35) can be
factored to give Eq. (3.47).

, (3.47)

where  is a quadratic phase factor and simplifies many of the diffraction
equations. In operator notation,

, (3.48)

where .
Equations (3.41) and (3.48) are the near field and far field propagation expressions. In the continuous

mathematical formulation, there is no difference between the two expressions. In discrete formulation for
numerical calculations, errors are reduced if the correct selection of a near or far field propagator is made.
This arises from the quadratic phase factors that must be evaluated. In the near field, the phase factor is
found from Eq. (3.42) and, in the far field the phase factor is found from Eq. (3.46):

 and . (3.49)

The phase factor,  for the near field phase factor varies rapidly as  but slowly as .
However,  varies slowly as  and rapidly as . Rapidly varying phase factors create
numerical errors called aliasing, which are described in more detail later in this manual. The near field
propagator aliases at large propagation distances but is well behaved at short propagation distances.These
relationships are summarized in Table 3.1. 

By using the far field expression at long propagation distances and the near field expression at short
distances, aliasing can be reduced to a tolerable level in most cases.
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Table. 3.1. Variation of quadratic phase factor for the two propagation algorithms for different distances.
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4. Diffraction Phenomenology

It is possible to develop certain rules-of-thumb to characterize diffraction effects. One of the most useful
concepts is the Fresnel number which may be used to characterize the diffraction of circular apertures. We
shall also consider the concepts of near- and far-field corresponding to Fresnel and Fraunhofer regimes.
Gaussian beams are an important special case because of their prevalence in laser systems. The Rayleigh
range of gaussian beams serves as an alternate to the concepts of near- and far-field regions. Linear gratings
have special significance for the angular spectrum theory and illustrate the concept of Talbot imaging and
the characteristic diffraction length. The important relationship between the magnitude of phase aberrations
and the presence of higher order harmonics in the far-field will be discussed. The concept of Huygen's
wavelets proves to be very useful in developing a conceptual understanding of diffraction. We envision each
point on the wavefront as being the source of spherical wavelets. The wavelets spread out at the speed of
light in the medium. At a finite distance, the combination of all wavelets cancels except at the boundary
which is locally parallel to the initial wavefront. A plane wavefront will retain its identity as a plane
wavefront during propagation, as shown in Fig. 4.1. Similar results apply for a spherically diverging
wavefront. The radius of curvature expands such that the spherical wavefront always has the same center-
of-curvature. The effect at any distant point is the cumulative effect of the radiation from all the Huygen's
wavelets.

Properly, the integration of these effects should be done along the spherical surface of the wavefront but
more commonly the integration is taken over a plane, as was done in Section 3. Kraus has investigated some
of the errors in the calculation of diffraction for spherical beams [7]. Consider a source point for a spherical
wavefront and an observation point, as shown in Fig. 4.2. The optical path difference (OPD) is the optical
path length (OPL) minus the axial distance, 

Fig. 4.1. Huygen's wavelets expanding from a plane 
wave (left) regenerate a plane wave. Huygen's 
wavelets from an expanding wave will regenerate 
an expanding wave.

Fig. 4.2. Fresnel zones for a spherical wavefront.
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. (4.1)

where  is the transverse radius. The optical path difference (OPD) is approximately,

. (4.2)

These regions are indicated by concentric circles centered at the observation point. The Fresnel zones
are found by dividing the aperture up into regions whose boundaries are one-half period apart. The zones
are numbered in Fig. 4.2. Odd numbered and even numbered zones add coherently separately. The variation
of phase is, of course, continuous but it is easier to illustrate with discrete bands. The number of Fresnel
zones is the Fresnel number. Fresnel numbers which are exactly even integers will result in zero intensity
on axis. Odd integer values of the Fresnel number will result in a peak value of beam intensity.

It is more convenient to define the Fresnel number in terms of the radius of curvature of the wavefront.
Let the radius of curvature of the wavefront be .  is defined to be the distance from the center-of-
curvature to the current position of the wavefront. We make the substitution,

, , (4.3)

where the geometric radius of curvature increases linearly with the propagation of the wavefront in the
positive z-direction, as shown in Fig. 4.3,

. (4.4)

In terms of the radius of the phase curvature, the Fresnel number is 

Fig. 4.3. Radii of expanding wavefront.
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, (4.5)

where  is the beam radius

, (4.6)

where  is equivalent distance in collimated space. All beams having the same Fresnel number will have
the same appearance apart from scale factors.

For an off-axis observation point, the half-wave phase surfaces are shifted with respect to the aperture.
The Fresnel zones do not intercept the aperture in a symmetrical manner. The off-axis point will never see
complete cancellation of the light for an even Fresnel number. The peak value for an odd Fresnel number
will be lower than for an on-axis point.

Where clear apertures are well-defined and the beam is of nearly uniform irradiance, the Fresnel number
may be used to specify the condition of the beam with respect to near- or far-field status. A useful rule-of-
thumb for whether the function is in the near- or far-field is

• near-field, if 

• far-field, if 
These expressions may be applied separately to the aperture sizes and degree of collimation for the x-

and y-directions. The Fresnel number is useful for simple systems with a single well-defined aperture. This
is always the case in geometrical optics, but in physical optics analysis there may be no apertures of
significance or several, as shown in Fig. 4.4. 

For a circular aperture the diffraction point spread function of Eq. (3.46) can be expressed in terms of
the Fresnel number,

. (4.7)

Fig. 4.4. Some systems have no apertures (left). Others have many (right). Fresnel number concepts deal poorly with 
either type of system.

Fn
a2

λZeff
------------=

a

Zeff Z1 Z0–( )
Z0
Z1
-----=

Zeff

∞ Fn 1≥ ≥

1 Fn 0≥ ≥

no aperture many apertures

t x y( , ) 1
jλz--------e

jπFnr2

a2------------------

=

Jump to: ,  Commands  Examples



32 GLAD Theory Manual
We want to know the spatial frequency exhibited at the point x. Taking the derivative of the quadratic
phase factor, we have

, (4.8)

where  is the phase of the quadratic phase factor. This corresponds to a spatial frequency of 

. (4.9)

The spatial frequency in the point spread function (PSF) at the edges of the aperture determine the
spatial frequencies present in the diffraction pattern. If  and  are the distances to the edges from the
point of observation, then the frequencies are 

 and . (4.10)

Figure 4.5 shows schematically the radii from the observation point to the edges of the aperture.

Figure 4.6 shows how the quadratic phase factor appears in the aperture with the distribution centered,
slightly displaced , more displaced , and with the distribution displaced by  from the center of
the aperture. The displacement of the quadratic phase factor gives the point on the near-field, free-space
diffraction function.

Near the center the spatial frequency of the intensity modulation is approximately . The degree of
modulation is strong because all parts of the aperture interact with the same spatial frequency in the PSF.
We can see that going from the centered condition to Point  results in a 1/2 cycle oscillation. The outer
dark band is partially blocked on the right and a white band is partially illuminated. At the center, both edges
give essentially the same frequencies. At the geometric shadow, the slight ripple in the diffraction pattern

Fig. 4.5. Schematic of the distances from the observation point to the edges of the aperture. The frequencies present 
in diffraction pattern depend linearly on the distances and .
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comes from the opposite edge of the aperture at twice the frequency in the center. The typical frequencies
at the center and the edge are

 and . (4.11)

As shown in Fig. 4.7, at the center of the diffraction pattern, both radii are the same . At
intermediate points, two frequencies are present and the diffraction pattern shows the effects of these two
frequencies beating together. At the edge, one frequency goes to zero and the other goes to . At the
edge, the distribution falls of sharply when one frequency goes to zero, but also shows a small amount of
oscillation in the shadow region.

Figure 4.8 show profiles of the intensity in a diffraction pattern of a circular aperture for Fresnel
numbers 5 and 6. Fresnel number 5 shows the peak intensity at 4 which is expected from a uniform intensity
of 1 across the aperture. Note that there are 5 principle bumps across the aperture. The peak intensity of ,
where  is the initial intensity, is characteristic of odd Fresnel numbers.

Fresnel number 6 shows a center intensity of zero typical of even Fresnel numbers. There are 6 major
bumps across the aperture the same as the Fresnel number. Both patterns show 25 percent intensity at the
geometric shadow. The extra bumps are due to beating effects between the frequencies generated from
diffraction from the two edges. The very fine bumps outside the geometric shadow are due to diffraction
from the far edge of the diffracting aperture.

4.1 Single Plane Wave Component
Diffraction alters the complex amplitude distribution with the higher frequency components being most

affected. Plane waves, , are eigenfunctions of free-space propagation. For small angles, plane waves
propagate as described in Eq. (3.43),

. (4.12)

where the leading phase factor  has been dropped. The phase of the phasor is 

Fig. 4.6. Appearance of the quadratic phase factor with the observation point at the center, slightly shifted, and shifted 
o correspond to the geometric edge of the aperture. The principle source of variations in intensity is the blocking or 
exposure of regions of constructively or destructive interference.
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. (4.13)

The frequency phasor will move cyclically from 
1) pure real,  

Fig. 4.7. The diffraction pattern of a flat top function exhibits characteristic frequencies. Near the center 
. In the region of the shadow, . The center, , , and the edge relate roughly to the 

Fresnel zones illustrated in Figs. 4.8.

Fig. 4.8. Fresnel numbers 5 (left) and 6 (right). The extra bumps are due to beating effects between the frequencies 
generated from diffraction from the two edges. The very fine bumps outside the geometric shadow are due to 
diffraction from the far edge of the diffracting aperture.
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2) pure imaginary,  

3) pure real, reversed phase, 

4) pure imaginary, reversed phase,  

5) pure real,  

The cyclical effect has an axial spatial period of . The frequency component is exactly
reproduced every full period. This effect was first reported by Talbot in 1836 and explained mathematically
in 1881 by Lord Rayleigh [4.1,4.2]. It is illustrated schematically in Fig. 4.9. The characteristic diffraction
length can be defined to be a quarter cycle of the Talbot imaging period.

. (4.14)

Propagation of one characteristic length will result in conversion of amplitude modulation to phase
modulation and vice versa. Calculations of diffraction and nonlinear gain require that the axis be sampled
at least twice per characteristic length to get the correct amplification of the high frequency amplitude
components which are appearing and disappearing during propagation. The amplitude and phase of a phase
grating at the initial condition and after one-quarter Talbot cycles are shown in Fig. 4.10.a and 4.10b.

If the function  has phase aberrations, we can analyze their effects by considering each frequency
component of the aberration. Let  be 

. (4.15)

Consider a complex amplitude distribution with a single spatial frequency in the wavefront

Fig. 4.9. at small periodic modulation in amplitude or phase will behave cyclically.
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 (4.16)

where C is the amplitude of the wavefront modulation. We can identify the frequency components, from a
Bessel function relationship

. (4.17)

The spatial frequencies are 

. (4.18)

As can be seen from Eq. (4.18), a single spatial frequency in phase has a range of frequency harmonics
in complex amplitude. When the phase modulation is small, we may consider only the lowest harmonic
frequency. For larger aberration coefficients, higher order harmonics must be considered. This may
significantly increase the sampling requirements for proper representation because we must represent the
complex amplitude in the array not the amplitude and wavefront. 

4.2 Far-Field Diffraction Effects
The far-field diffraction pattern is formed either by propagating a great distance or by propagating to

the focal point of a lens. Far-field diffraction is described by Fraunhofer diffraction. The complex amplitude
in the image plane is

Fig. 4.10.a. Initially, the amplitude is selected to be a top 
hat function and sinusoidal phase modulation is 
imposed. The effect may be observed for small phase 
modulation if the spatial frequency is sufficiently high.

Fig. 4.10b. After diffraction of one-quarter Talbot cycle, 
the phase modulation has turned to amplitude 
modulation. Note, that the phase modulation is gone 
except in the regions near the edge of the aperture.
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, (4.19)

, (4.20)

where 
•  is the amplitude distribution in the pupil
•  is the amplitude distribution in the final plane of observation
•  is the focal length of the lens

•  is a two-dimensional Fourier transform from Eq. (3.43) with , .

The quadratic phase factor makes the complex image distribution not exactly the Fourier transform of
the pupil distribution. If we first propagate a distance  prior to the lens, the quadratic phase factor will be
deleted. Propagation a distance  in the near-field imposes a quadratic phase factor in frequency space of 

, (4.21)

exactly the correct amount to cancel the quadratic phase factor of Eq. (4.19). We can see that a simple lens
forms the exact Fourier transform of whatever is in the front focal plane of the lens. If we are only concerned
about the intensity in the far-field, we can disregard the quadratic phase factor and claim that the lens forms
a Fourier transform of the pupil.

For a uniformly filled pupil, the far-field pattern is

, (4.22)

where  is the first order Bessel function of the first kind and a is the aperture radius. We have dropped a
factor of , a constant phase term.

The irradiance distribution is 

. (4.23)

This is the well-known Airy pattern.
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4.3 Gaussian Beams
With the advent of the laser, great interest has been generated in gaussian beams. Well-behaved stable laser
systems generate beams which are very nearly gaussian beams[3]. More recently Seward has argued that
the equations may be written more simply in terms of diameters and full angles[9], but we will use the
conventional treatment in terms of radii and half angles. The gaussian beam is the lowest mode of a set of
Hermite gaussian beams. The Hermite gaussians are orthogonal and complete so they are convenient for
describing arbitrary functions. All of the Hermite-gaussian functions can be propagated analytically, so they
provide an alternate method to the Fourier transform propagation techniques. 

The gaussian beam has several interesting properties
• analytically propagatable
• its own Fourier transform
• ideally smooth
• tightest focus position is not at the paraxial focus
The gaussian beam is characterized by a well-defined minimum beam size called the waist. The

complex amplitude at the waist is of the form[3]

, (4.24)

where  is the transverse coordinate and  is the gaussian transverse radius at the waist.
The definition of the gaussian spherical wave adds a quadratic phase factor: 

, (4.25)

where  is the wave number and  is the radius of the phasefront. At the waist , and the phase factor
disappears.

To the accuracy of scalar Fresnel diffraction, the gaussian beam propagates according to the equation. 

, (4.26)

where we have used the normalized form. The amplitude drops proportionally to the increase in beam
radius. There is a piston term which contains a phase term specific to gaussian beams. The remainder of the
function is a spherical gaussian wave. For a traveling wave coordinate system we drop the  term
because we assume a traveling coordinate system moving at the speed of light:

 radius of beam, (4.27)
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 phase radius, (4.28)

 phase factor, Gouy shift[4,5,6,7,8], (4.29)

 Rayleigh distance. (4.30)

4.4 Significance of Rayleigh distance
The transverse waist radius increases away from the waist to form a hyperbolic surface of revolution.

The phase term  is a piston term varying from  to  when propagating from  to
. The local transverse distribution is scaled according to the local beam radius, .The radius of

the quadratic phase factor, , varies from  at the waist to a minimum value of  at the Rayleigh
distance, and then back to  when . The maximum curvature of the wavefront occurs at the Rayleigh
distance. The beam size has increased by  at the Rayleigh distance. The spherical harmonic wave
transforms itself into another spherical harmonic wave upon propagation. This is not strictly an
eigenfunction relationship. The eigenfunction of free-space is the plane wave. However, the gaussian
spherical harmonic wave is almost an eigenfunction.

4.4.1 Finding the Waist
Given the spherical gaussian wave properties at some arbitrary point, we can calculate the location and

size of the waist. Given the beam waist size, , and the phase radius, , we seek a value of  and
 which will satisfy the following equations:

, . (4.31)

The solution to these equations is 

, . (4.32)

4.4.2 Lens Law for Gaussian Beams
To determine the properties of a thin lens acting on a gaussian beam, we simply consider the local phase

radius of curvature to be transformed according to,

(4.33)
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Note that we have adopted a sign convention for gaussian beams for the radius to be positive if the center-
of-curvature is to the left, opposite to the usual convention for geometrical optics but consistent with
Siegman's treatment [3]. The lens simply modifies the phasor radius of curvature. The beam size is
unmodified. If we need to calculate aberrations of the lens, we should use the local radii of curvature to
define the object and image conjugates.

The Rayleigh distance may be used to develop a concept of near- and far-field which is a generally more
useful definition. For any beam we can find a gaussian beam which best fits the distribution. We can then
consider whether the (best fit gaussian beam is inside or outside the Rayleigh range.

4.5 Hermite Gaussian Beams
The transverse modes of ideal stable resonators take the form of Hermite gaussian polynomials or

Laguerre gaussian. The general polynomial form of the Hermite gaussian functions is

(4.34)

where  is the order of the polynomial,  is a waist radius parameter similar to the gaussian beam and
 are the Hermite functions. The two-dimensional functions may be described by multiplying two one-

dimensional functions. The order and waist parameters may be different for the two directions.
The Hermite gaussian functions may be propagated analytically. Let  and  be the initial q-factor

and axial position, where

. (4.35)

For a propagation to the new plane , the new q-parameter, the complex radius, is

. (4.36)

We further define the parameter , such that

. (4.37)

The Hermite gaussian function at plane  is

. (4.38)
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Both the Hermite polynomial  in the numerator and the term  in the denominator become very
large, even though their ratio is well behaved. The Hermite gaussian may be directly calculated recursively
to achieve better numerical accuracy and less risk of having intermediate values exceed the word length of
the computer (See Ref. 10),

, (4.39)

. (4.40)

The higher order terms may be generated recursively by,

. (4.41)

In the special case where , i.e., no propagation, and evaluation of the Hermite gaussian at the
waist; we have  and :

, (4.42)

. (4.43)

The higher order terms may be generated recursively by,

. (4.44)

Calculation of the Hermite gaussian functions using Eqs. 4.42, 4.43, and 4.44, appears to avoid the
problem of large numbers when evaluating Eq. 4.34 directly. The speed of calculation should be essentially
the same as for , provided a table of  is precalculated.
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5. Propagation in Homogeneous Media

The propagation through any well-behaved system can be separated into geometrical aberration
calculations and propagation in homogeneous media. This concept will be more thoroughly developed in
the next section on optical systems. In this section the methods for propagation—the hardest part of the
modeling problem—will be described. The mathematically equivalent expressions of Eqs. (3.41) and (3.48)
provide a complete description of diffraction propagation in homogeneous media in the Fresnel
approximation. These equations form the basis of a set of numerical procedures which can treat all possible
problems of propagation in homogeneous media. There are three major issues to consider:

• sampling interval,
• relative filling of the computer array,
• use of reference surfaces.
The sampling interval will determine the highest spatial frequency which can be represented. The

relative size of the distribution in the computer array determines the amount of amplitude which falls outside
the array boundaries and which folds back into the array to cause aliasing. When dealing with noncollimated
beams, it is often advantageous to use curved reference surfaces to minimize the magnitude of phase
variations that must be included in the complex amplitude distribution. By removing all or most of the phase
associated with divergence or convergence, the array need only contain the phase which represents
aberration of the beam. The general principles of sampled representation and discrete Fourier transforms
will be developed. Sampling guidelines based on knowledge of the characteristic spatial frequencies in the
diffraction pattern will be developed. The nature of aliasing and guidelines for the maximum allowable
filling of the computer array will also be explored. Last, a consistent set of algorithms will be presented to
treat all cases of diffraction propagation.The development will be done in separable form.

In numerical calculations, only discrete points may be represented. Also, only a limited region of space
may be considered because of computer memory limitations. Consider a two-dimensional function
represented in a rectangular computer array of  points as shown in Fig. 5.1. The sampling intervals
for the x- and y-directions are  and . In the general case,  and . The width of the computer
array representation is  by . Information exists in the computer only at the discrete points defined
by the rectangular grid. Any functions to be represented must be truncated by the finite width of the
computer array. 

The computer points in the spatial domain will be counted with the indices  and . The indices have
the ranges

, . (5.1)

Note that the center of the distribution has been chosen to be at . Many Fast Fourier
Transform (FFT) routines based on arrays dimensions which are powers of 2 are implemented with natural
centers either at  or  by shifting the array one-half cycle in each direction. The
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natural center of the array is defined to be the point at which a delta function will give a perfectly constant
real Fourier transform. An article by John Hayes in Applied Optics and Optical Engineering discusses the
properties of FFT's in detail [1]. The physical limits are obtained by multiplying Eq. (5.1) by  and ,

, . (5.2)

Sampling can be represented as multiplication by a special function called the comb function. The comb
function is an infinite array of delta functions spaced apart by  and ,

. (5.3)

The comb function is useful in transforming a continuous function into a discrete representation,

. (5.4)

where  is the continuous function to be sampled. The arrow indicates transformation from
continuous to discrete form.

The discrete nature of the spatial domain causes the frequency domain to be periodic (and necessarily
of infinite extent). The continuous function , the Fourier transform of  is replicated with a
period of . This is illustrated in Fig. 5.2.

The Fourier transform domain functions must also be discrete. The most common (and most efficient)
form of the FFT has the same dimensions for the spatial and frequency domains. The frequency domain
indices  and  have the ranges

Fig. 5.1. Rectangular computer array representation of the function. In this case , , and Δx is greater 
than Δy.
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, . (5.5)

Multiplication of Eq. (5.5) by  and  gives the frequency range,

, . (5.6)

The frequency domain bounds are the Nyquist sampling frequencies. The FFT algorithm is occasionally
blamed for this restriction, but it is more accurately attributed to the discrete sampling process and will exist
for any form of propagation of sampled data.

The continuous frequency domain function is also transformed to discrete representation by means of
the comb function,

. (5.7)

The discrete nature of the frequency domain forces the spatial domain to also be periodic with period
. These relationships are shown schematically in Fig. 5.3. 

A Fourier transform pair can be defined for modified spatial and frequency functions  and
, such that we have an exact Fourier relationship,

, (5.8a)

Fig. 5.2. Sampling of the spatial domain causes the frequency domain to be periodic with period .
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, (5.8b)

, (5.8c)

where  indicates two-dimensional convolution and  indicates two-dimensional Fourier
transformation pairs. 

The function, , causes the spatial domain to be periodic with minimum periods of
 and  in the x- and y-directions. There is, in effect, an infinite rectangular array of functions

separated by  and . Therefore, the frequency domain sampling periods are

, . (5.9)

The Fourier transform operator can be written in discrete form,

, (5.10)

Fig. 5.3. Sampling periods in the spatial and frequency domains.
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where s is +1 for forward transformation and -1 for inverse. Various forms of algorithms are used in FFT's
and some have a normalization step for the forward or inverse transformation.

Evaluation of the far-field expression, Eq. (3.48), in discrete terms causes a redefinition
of sampling period,

, (5.11a)

, . (5.11b)

The coordinates  are related to  by,

, , (5.12)

based on Eq. (3.48). The discrete far-field calculation is therefore

, (5.13a)

, , (5.13b)

, (5.13c)

. (5.13d)

Note, the scale change of the new sampling periods,  and . The discrete near-field propagation
equation is

. (5.14)

5.1 Sampling 
There are two important and related issues in determining the numerical sampling. The highest spatial

frequency which can be represented in the computer is determined by the sample spacing  and . The
region of space which can be represented is determined by the width of the computer array  and .
First we will consider the diffraction phenomenology which can be observed with a given sample spacing.

The Nyquist sampling frequency—the highest frequency which can be represented—is

. (5.15)
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To understand how this function applies to diffraction patterns, consider the diffraction pattern of a top
hat function. This function is both representative of many aperture functions and analytically tractable. Near
the center of the pattern the characteristic frequency of the irradiance variations is . This holds
approximately true within the bright region of the geometrical beam. The frequency is ,
outside the geometrical beam—the shadow region. To satisfy the Nyquist frequency, the sampling should
be chosen to be  to resolve the center detail, and  to resolve the detail in the
shadow. These regions are illustrated in Fig. 4.7.

Failure to resolve the highest spatial frequencies may not result in an unacceptable representation of the
function. In particular, using the near-field propagator for very short distances will show the distribution to
be largely unchanged (the correct answer) even though the high spatial frequencies may not be correctly
sampled.

Aliasing has a much more serious affect on the accuracy of the information. If the distribution grows
outside the bounds of the array, severe aliasing will result which may render the calculation unusable. These
errors arise from the finite size of the computer array. Because of propagation, a collimated beam expands
and the complex amplitude grows beyond the bounds of the array and is folded back on itself, as shown in
Fig. 5.4. This folded amplitude is the source of aliasing errors. The folded amplitude causes high spatial
frequency errors in the intensity pattern, as shown in Fig. 5.4.

Fig. 5.4. Because of the periodic nature of the discrete calculations, the amplitude in the computer array folds over 
into neighboring “ghost” arrays and vice versa. The intensity distribution may be at a relatively small value, as 
indicated in the top drawing by . However, it is the complex amplitudes that interact at the boundary. The 
amplitudes decay much more slowly than the intensity, as indicated by ε in the middle drawing. An intensity pattern 
with aliasing is shown schematically in the bottom drawing. The aliasing errors are largest where the intensity is 
highest because the signal boosts the amplitude error.
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The most severe errors tend to be where the distribution has the highest amplitude, not near the edge of
the distribution. This is because the amplitude of the signal and error add rather than the intensities. Consider
a nominally top hat function of unit amplitude and an aliasing contribution of . Assume that  is slowly
varying across the array. Near the edge of the array the intensity is of the order of magnitude of . In the
center, the intensity is roughly . The error in the center will be of order  —much larger than
the error at the edge of order . It is important not to be deceived into believing that the aliasing errors are
negligible by seeing an intensity distribution roll-off at the edge of the array. Approximate guidelines for the
magnitude of aliasing errors may be determined for top hat functions, i.e., uniformly filled circular
apertures. The results will be generally characteristic of distributions with strong discontinuities. For top hat
functions there is an exact solution based on Lommel functions [3]. The Lommel functions may be
approximated by an asymptotic solution [4]. This approximation enables the calculation of aliasing errors
to be made for the bright region inside the geometric aperture area and the dark region in the shadow.
Because the amplitude values add—not the irradiance values—the aliasing errors are affected by the signal
level. Let  and  be the errors in the bright and dark regions, then approximate expressions for the errors
are

, . (5.16)

These expressions give the order of magnitude of the effects. Aliasing errors are not always immediately
distinguishable from diffraction ripples. Generally, high spatial frequency ripples will be manifest in the
immediate vicinity of an aperture, but high spatial frequency aliasing errors will be present all over the
distribution with the largest errors where the distribution has high intensity. Some experimentation with
different size arrays and sampling may be required to gain an understanding of the appearance of the two
phenomena. Consider a case of a beam of 5 mm diameter, wavelength 1.6 microns, and propagation of 100
cm. An array of  points is selected and in the first case, shown in Fig. 5.5.a, the array is almost
completely filled by the aperture (78%). In Fig. 5.5b the aperture is less than half the size of the array (39%).
Both beams are propagated a distance of 100 cm, which is a Fresnel number of 3.9. Fig. 5.5c shows the
diffracted beam with the small guardband. The distribution is filled with high frequency ripples. Fig. 5.5d
shows the distribution with the large guardband but windowed to have the same size as Fig 5.5c. There is
still a relatively large area surrounding the distribution of Fig 5.5d and the high frequency ripples are greatly
reduced, but not completely absent. Examination of Figs. 5.5c and 5.5d shows that the aliasing errors are
most noticeable in the center of the array and not at the edges as might be expected. This is because the
aliasing errors add as complex amplitude numbers to the correct distribution and are effectively boasted by
the distribution in the center of the array. It is clearly not sufficient to judge the degree of aliasing by the
level of irradiance at the edge of the aperture. 

Close examination of the degree of aliasing either by performing numerical experiments or using Eq.
(5.16) may at first be discouraging since most near-field diffraction calculations have significant amounts
of aliasing. In practice, many calculations are not adversely affected by significant levels of aliasing. For
specific problems, one can try various guardband values to determine whether results are affected. Ideally
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one increases the array size and the guardband width—keeping the same number of sample points across
the distribution until no appreciable change in the results is observed. In practice one may choose the array
size based on the computational time that is consistent with one's own level of patience.

5.2 Automatic Selection of Matrix Units 
This section describes an automatic selection algorithm for sampling units that is made in choosing a

gaussian beam. Since the authors of the code do not know in advance what the user is going to do with the
beam distribution once it is formed, the only reasonable choice for an automatic program choice of units is
to make the sampling the same in both the spatial and frequency domains. To do so, we must make some

Fig. 5.5.a. The aperture is 0.5 cm in diameter and the 
width is 0.64 cm, leaving only a small guard band.

Fig. 5.5b. The aperture is the same size of 0.5 cm as Fig. 
5.5.a but the field width is 1.28 cm, so the guard band is 
much greater.

Fig. 5.5c. After propagating 100 cm (a Fresnel 
number of about 3.9) the distribution shows large 
scale diffraction ripples and many small aliasing 
ripples. Note that the ripples show up very strongly 
in the center and damp down toward the edge of the 
array.

Fig. 5.5d. The beam with the large guard band, as shown 
in Fig. 5.5b. has been propagated the same distance. The 
plot shows the distribution rescaled to cover the same 
size as Fig. 5.5c. for direct comparison. There still 
remains a large guard band around the distribution 
which is essentially empty.
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assumptions about the beam distribution. Consider a gaussian beam and its Fourier transform. Further
assume ,

, (5.17)

, (5.18)

 = gaussian beam waist,
 = spatial domain index,
 = frequency domain index.

For equal sampling in both domains for the gaussian function,  and  should have the same
relative value when . The solution for  to accomplish this is

. (5.19)

A similar solution for a top hat function can be derived as well. Given a top hat of radius  and solving
for the condition that the top hat function and the first Airy dark ring should span the same number of sample
points, we have

. (5.20)

Top hat and gaussian functions with equal sampling are illustrated in Figure 5.6. 

5.3 Propagation Control 
The previous section establishes an acceptable initial sampling condition. However, the beam spreads

due to diffraction and may therefore overfill the computer array. Fortunately the near-field and far-field
propagators may be used to control the size of the array so that the beam aliasing does not change much
from the initial state. The sampling period of the near-field is constant. The sampling period of the far-field
is 

. (5.21)

By use of a combination of near-field and far-field propagators, the sampling period may be set to any
required value. It is necessary to have some analytical measure of the size of the diffracted beam at all points
in space, so that the correct sampling period may be chosen. The Fresnel number may seem to be an obvious
choice. In conventional optical systems the beam stays in the near-field (large Fresnel numbers) as it goes
through all the optical elements and then propagates to the far-field (small Fresnel numbers) after the final
aperture. More complex systems may have internal foci so that the beam goes from near- to far-field inside
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the beam train. Some systems may be analyzed accurately ignoring all apertures. In that case, it is not
possible to define near- and far-field regions and the concept of Fresnel number is meaningless. The
conditions were illustrated in Fig. 4.4. The gaussian beam has an easily calculated width at all points in
space. Any complex amplitude distribution in space may be approximately fit to a gaussian beam of radius,

, and phase radius, . From these value, the gaussian waist size  and the distance to the waist  may
be calculated by Eq. (4.27). The gaussian beam acts as a surrogate to the actual beam. The gaussian beam
parameters should be recalculated, so that the surrogate beam remains representative of the actual
distribution.

We could elect to adjust the sampling period to track exactly. In this case the units would be
continuously changing. It has proved to be more desirable to have a region of constant sampling period near
the waist and a region of linearly increasing sampling period far from the waist. The two possibilities are
illustrated in Fig. 5.7. The far-field propagation has an expanding coordinate system of the form of Eq. 5.21
and the near-field propagation has a constant coordinates system of the form, . 

When the beam size becomes comparable to the array size, aliasing occurs. To calculate the distance at
which the switch should be made from constant sampling period to linearly increasing sampling period, we
solve for the distance from the waist at which the increasing period equals the constant period. If

 for the variable sampling period, then  is the condition to be met for change
from the constant to variable sampling periods. This occurs when . The switch is made at the
Rayleigh range. This condition is illustrated in Figure 5.8. The process can, of course, be reversed. We can
propagate from any distant point back to the waist[4].

A function  may be defined as the complex amplitude with respect to the curved reference
surface of radius  such that

Fig. 5.6. This figure shows schematically how a gaussian (solid lines) and a top hat function (dashed lines) and their 
Fourier transforms appear if the domains have equal sampling.
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, (5.22)

where  is still the distance from the waist. We can propagate either , referenced to a plane surface,
or , referenced to the curved surface, using the equations to be presented. We wish to select either

 or  depending on which has the smaller residual phase. The surrogate gaussian beam again
proves to be useful. At any point in space, the gaussian beam is

. (5.23)

The function , using the curved reference is

. (5.24)

where z is the radius of the reference surface. The critical question is whether the residual phase of Eqs.
(5.23) or (5.24) is less. Consider the phase error of the actual wavefront with respect to either a planar or
spherical reference surface, evaluated at the  point of the gaussian amplitude,

Fig. 5.7. Dashed lines represent fixed (upper) and variable (lower) array sizes.
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, . (5.25)

For a representative gaussian beam the propagation equations are:

. (5.26)

Equation (5.25) then takes the form

, . (5.27)

These functions are plotted in Fig. 5.9. The phase error  is minimized by choosing a plane reference
inside the Rayleigh distance and a spherical reference outside the Rayleigh distance.

For a gaussian beam,  should be used if . For , the  form should be used. This
quadratic phase factor is exactly the same as is applied in the far-field propagator Eq. (5.13a), so that phase
factor need not be applied.

Fig. 5.8. Array size with constant size inside the Rayleigh range and variable size outside. There are four different 
possibilities in moving from inside or outside to inside or outside indicated by the acronyms II, IO, OI, OO.
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5.3.1 Propagation control with continuous units using M-squared 
In the previous section, arguments were presented in favor of switching between near- and far-field at

the Rayleigh distance. If the Rayleigh range is the boundary and the units are selected according to Eq.
(5.19), the units immediately on either side of the Rayleigh range will be nearly identical, so that there is no
discontinuity in the size of the array. For other choices of units there will be a discontinuity in the array size
at the Rayleigh boundary and associated difference in the degree of filling of the array.

Instead of the Rayleigh range, we may define the near-to-far field boundary at the point where the
constant near-field arrays size matches the linearly expanding far-field array size. The units are matched as
well on either size of this boundary.

Starting from the surrogate gaussian waist, the we can find  be the boundary to achieve continuous
units. If we are not at the waist, then the beam shoudl be propagated to the waist (using the current value of

, change  as described blow, and then propagate back to the original position. Let the units in the
near-field region centered at the waist be  and the units of the far-field be .

(5.28)

We wish to find the point  in the far-field having the same units as the in the near-field. This condition is
,

(5.29)

For a given waist size , a generalized definition of Rayleigh distance can be used to include :

Fig. 5.9. Phase at the 1/e radius point as a function of distance from the waist. The plane reference surface has a 
small phase error near the waist. A spherical reference surface has the smallest phase error for large distances from 
the waist. At the Rayleigh distance, the two reference surfaces have phase errors of equal magnitude but opposite 
sign.
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(5.30)

We can adjust the choice of  so that the Rayleigh distance matches the condition for continuous units.
For units Δx at the waist, Eq. (5.29) may be used with Eq. (5.30) to find the correct choice of  to have
continuous units:

(5.31)

The exact choice of  to achieve continuous units will vary somewhat as the beam is propagated
through lenses and mirrors, so the selection of  should be made in the optical space where continuous
units are required.

5.3.2 Methodology for path-independent propagation control 
The objective of the propagation control algorithm is to be able to move from any point in space to any

other. To do so it is convenient to first define primitive operators; plane-to-plane (PTP), waist-to-spherical
(WTS), and spherical-to-waist (STW). 

Let us first find the best fit gaussian function which represents the current state of the beam width and
phase radius. Let the best fit gaussian parameters be  and . Find the distance to the gaussian waist (in
the current optical space) and the gaussian waist radius by using Eq. (4.32)

We shall consider whether a given point lies inside or outside the Rayleigh range

inside , (5.32)

outside . (5.33)

We shall now classify the propagation into whether the starting and ending points are inside or outside.
We define four operators which cover all possible cases are

: inside  to inside , (5.34)

: inside  to outside , (5.35)

: outside  to inside , (5.36)

: outside  to outside . (5.37)

These operations are illustrated in Fig. 5.8. We shall define these four operators in terms of three primitive
operators:
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, (5.38)

, (5.39)

, (5.40)

. (5.41)

These primitive operators are

, . , (5.41a)

, (5.41b)

, , , (5.42a)

, (5.42b)

, (5.42c)

, , . (5.43)

These can also be written in separable form. The phase bias operations associated with a lens and incident
light which may or may not have a radius of curvature and for exiting light which may or may not have a
radius of curvature are illustrated in Fig. 5.10. The operators for the four possible cases are described in
Table 5.1

5.3.3 Using Surrogate Gaussian Beams for Propagation Control 
Surrogate gaussian beams are used for propagation control. These beams are considered to behave

approximately as the actual beam behaves and, therefore, allow a convenient method of determining the
algorithms to be used. There is some latitude in the selection of the algorithms for most problems and the
algorithm choice need not be determined from calculations of great accuracy. The exception to this is
resonators where care should be taken to use exactly the same algorithm choices in each pass to achieve
maximum numerical stability. This may be done with the zbound or geodata commands.

When the beam is initialized by the clap or gaussian commands a choice is made of the surrogate
gaussian size.Subsequent propagation distances and optical elements will modify that choice. One may
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update the surrogate gaussian beam parameters fitting the actual information in the beam array with
fitgeo or explicitly by using geodata. The defining parameters of the surrogate gaussian beam are the
waist  and the position of the waist . The surrogate gaussian waist radius and position do not change
with propagation. An optical element will change the phase radius of curvature at the lens by the Lens Law.
The change to the surrogate beam by the lens takes place in five steps:

1) Calculate incident phase radius of curvature  and local transverse radius according to Eq. (4.31)

, , (5.44)

2) Calculate new radius of curvature  by the Lens Law

, (5.45)

Fig. 5.10. Relationship between surrogate beam parameters before and after a lens.

Table. 5.1. Phase corrections applied to the array after a lens depending on surrogate gaussian parameter.

inside-to-inside no phase bias

inside-to-outside phase bias after lens

outside-to-inside phase bias before lens

outside-to-outside phase bias before and after lens
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3) Calculate the new surrogate gaussian parameters  and  from Eq. (4.32):

, , , (5.46)

4) Determine whether new beam is inside or outside new Rayleigh distance

inside if , outside if , (5.47)

Depending on the choice of units, Eq. (5.47) may lead to discontinuous units at the point . The boundary
may be shifted somewhat from the Rayleigh distance so that there is no discontinuity, as discussed in Section
5.3.5

inside if , outside if , (5.48)

5) Apply phase correction factors to the distribution depending on the old inside-outside and new 
inside-outside status.

The set of steps described above must be done for each element with optical power. Let us consider a simple
example. Consider the gaussian beam of Example 3. Given a gaussian beam of wavelength 10.0 , initial
waist , located at , propagation of 100 cm, lens of  cm and propagation of 100
cm. This results in a waist at the last plane. The surrogate gaussian beam proceeds in a slightly different
fashion as indicated in Table 5.2. In this example the lens lies inside the initial Rayleigh range and outside
the final Rayleigh range so a quadratic phase factor, according to Table 5.2, is applied.

5.3.4 Establishing the Properties of the Surrogate Gaussian 
The surrogate gaussian beam serves to provide a simple indicator of the size of the beam at all points in

free space. The growth of the beam depends on the initial size, the wavelength, and the nature and magnitude
of wavefront aberration and intensity irregularity. Fig. 5.11 shows two beams. The upper beam has no
aberration and a smooth gaussian intensity that expands according to the Rayleigh distance. The lower beam
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Table. 5.2. Example of surrogate gaussian beam propagation, .

Event IO status

start I 785.398 0.50000 0.0 0.50000

prop, 100 I 785.398 0.50000 0.0 0.50404 6268.505

lens, O 12.732 0.063662 200. 0.50404 -101.6211

prop, 100 O 12.732 0.063662 200 0.063662
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f 100=
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has high spatial frequency aberration that causes the beam to diffract at a larger angle. The point at which
the beam expands by about  may be considered an effective Rayleigh distance with a corresponding
effective wavelength . We can represent the effective Rayleigh distance as

effective Rayleigh distance = (5.49)

We choose  to match the initial beam size and  to match the width of the angular spectrum. 

We can decide choose to measure the width of spatial and frequenc domains by the method of our
choice. Siegman has recommended using the standard deviation of the beam (See Section 7.4). The effective
wavelength is proportionally greater than the true wavelength by

. (5.50)

Fig. 5.11. Comparison of two beams of the same initial width. The beam at the top has no aberration and begins 
significant expansion at the Rayleigh distance. The beam at the bottom has significant high order aberration and 
begins expanding at a much shorter distance which may be considered an effective Rayleigh distance with 
corresponding effective wavelength that is larger than the true wavelength.
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As we may have different properties in the two transverse directions, we may have different effective
wavelength values accordingly for the two transverse directions.

5.3.5 Selection of boundaries for continuous units control
For a curved reference surface, the calculations may be done with the phase associated with the

reference surface factored out of the complex amplitude as represented in Eq. (5.24). Consider that the
center of curvature of the reference surface is the location of the waist of a representative surrogate gaussian
beam, . When the beam is far from the surrogate gaussian waist, i.e. well outside the Rayleigh range, at
some starting location  the beam may be considered to collapse toward or diverge from . Geometrical
expansion or contraction with the OO operator via Eq. (5.41) leads to geometric change in the sampling
units

(5.51)

where  is the boundary separating the near- and far-field. Similar principles apply to the y-direction. In
the vacinity of the waist the II operator via Eq. (5.38) should have constant units. In terms of the initial
starting position the units should have a constant value over the range 

, (5.52)

where M is the size of the array in pixels. To avoid discontinuities, the expressions for units from Eqs. (5.51)
and (5.52) should have equal values at :

(5.53)

Leading to the requirement for  that

(5.54)

Equation (5.54) will ensure that there is no discontinuity in the units at the boundary  and that the units,
and the width of the associate matrix, will follow the dotted outline indicated in Fig. 5.8.

Equation (5.53) would be implemented as

(5.55)

and Eq. (5.54) is implemented as
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(5.56)

For this particular choice of boundary the results, including sample spacing, must be identical. Note that Eq.
(5.55) requires two FFT’s and Eq. (5.56) requires three FFT’s. This is the standard method of propagation
used in GLAD. Its limitations are that the units in the far-field are strictly determined from the initial units,
wavelength, and number of pixels on a side. The variability of the far-field units with wavelength make it
difficult to calculate interactions between beems of different wavelength.

5.3.6 Method for zone control
A more advanced method of propagation is used with the zone command to control the size of the far-

field units and consequently the size of the region of constant units in the far-field. Assume begin at position
 with a spherical reference surface wish to propagate to position  in the vacinity of the waist with a

plane reference surface. Further assume that the far-field units are  such that, in general,

(5.57)

Further assume that no discontinuities in units are desired at the boundary between near- and far-field. The
boundary to achieve the desired units is found from

, (5.58)

To realize these units in the far-field, propagate to  using the OO operator, convert to a plane reference
surface, and continue to the desired point with the II operator

(5.59)

The operator  removes the phase bias and reestablishes a flat reference surface. Four FFT’s are
required. The units in the far-field will be maintained at the value at the boundary such that

(5.60)

Equations (5.58), (5.59), and (5.60) may be used to specify either the position of the boundary—perhaps to
extend the region of constant units about the focus position—or to specify the far-field units.

5.3.7 Propagation with control of scaling 
We can propagate with a small adjustment of magnification beyond the normal geometrical value. Let

us assume the distance to propagate is  and the magnification change is M.
In the case of collimated propagation an afocal telescope of Gallalian form can be used to change the

magnification while propagation the same effective distance. The Gallalian telescope consists of a leading
negative lens of  and a positive lens of focal length . The two lenses are separated by a distance L. To
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rescale the distribution while retaining units constant, phase lenses should be used. We have the following
replationships:

(5.61)

(5.62)

(5.63)

We can apply the leading phase lens , propagation step, and trailing lens  in nearly the same time as the
usual propagation step. The units must be explicitly scaled.

To propagate with an increase of units, choose  such that the beam is compressed in the array
(magnification less than 1), then redefine the units after propagation such that . This
procedure may be used to achieve a curved path for the span of the computer array versus propagation
distance to more closely follow the path of a gaussian beam.

5.4 Finite Difference Propagation
High Fresnel number results in high spatial frequencies that require high sampling rates and,

necessarily, large arrays. FFT computations are time consuming and the question naturally arises as to
whether alternate methods have advantages. The method most frequently considered is the finite difference
propagator (FDP). The advantages of the FDP are that it is very fast for short steps [2]. The disadvantages
are

1) one must take short steps (repeated application of the algorithm is required for long propagation),
2) the algorithm is numerically unstable at discontinuities,
3) certain diffraction effects are washed out.

This length is called the characteristic diffraction length. Since the iterative solution of the propagation
problem in a nonlinear active medium requires recalculation of the diffraction effects every characteristic
length, it may be advantageous to use the FDP in solution of the inhomogeneous wave equation. Because
of the restrictions on step length and discontinuities, considerable care must be exercised in the use of the
FDP.

5.4.1 Real-Imaginary Description
The finite difference propagator was developed by Rench[2]. The derivation is very simple. Rather than

use the plane wave decomposition, we solve the parabolic wave equation directly:

. (5.64)

The second derivatives are taken from the discrete complex amplitude distribution by
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, (5.65)

, (5.66)

where  is an element of the complex amplitude array and  and  are the indices. The second
derivative is taken by considering only the neighboring points. In the area of a discontinuity the numerical
procedure blows up. One can patch the algorithm somewhat but there are no perfect fixes known. The major
limitation is, therefore, errors which occur at sharp boundaries, such as the edge of mirrors. The principal
manifestation of the intensity discontinuity is a large phase spike. This phase spike will decay during
subsequent propagation steps but will spread sideways, ultimately causing serious disruption of the
distribution. The width of the damaged region increases each application of the algorithm. A second
problem, unrelated to the discontinuity problem arises from the fact that the finite difference propagator
must be applied several times per characteristic diffraction length. The longest single allowable propagation
step was calculated by Rench to be

. (5.67)

Taking , we find Eq. (5.47) very similar to Eq. (4.14). To propagate any significant distance the
algorithm must be repeated many times.

For strong nonlinear gain, we may have to calculate diffraction and gain intermittently at many points
along the axis, taking steps no longer than the characteristic length. In that case, the requirement for short
steps with the finite difference propagator is not a problem. Figures 5.12.a and 5.12b show propagation of
the same distance with the FFT and the finite difference algorithms respectively. The finite difference
propagator can certainly be improved by using good numerical analysis methods but the method will
eventually manifest numerical instabilities after a sufficiently long propagation sequence.

∂2A
∂x2--------- A I 1+ J,( ) A I 1– J,( ) 2A I J,( )–+

2Δx-----------------------------------------------------------------------------------≈
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2---Δx2<

2Δx 1 f⁄=

Fig. 5.12.a. Propagation with the FFT algorithms. Fig. 5.12b. Propagation with a finite difference 
propagator the same distance as Fig. 5.12.a. The 
spurious errors near the edge are due to the algorithm.
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5.4.2 Amplitude-Wavefront Description
The amplitude-wavefront representation provides an alternate method of representing the optical beam:

complex amplitude , where  is the amplitude and  is the wavefront error. In amplitude-
wavefront, Eq. (5.44) takes the form

(5.68)

(5.69)

Equations (5.64) and (5.65) allow direct propagation of the amplitude-wavefront representation of the beam.
It is capable of representing large wavefront errors without the problem of higher order intrinsic to complex
amplitude form. It is, however, subject to the same difficulties of finite difference propagation as Eq. (5.64).

5.5 Propagation of Rotational Functions and Fast Hankel Transforms 
The primary propagation algorithms in GLAD are based on rectangular propagation with angular

spectrum techniques that assume no symmetry. In the case of strictly rotationally symmetric functions,
Hankel transforms may in principle be used to solve the diffraction integrals. The Hankel transform pair
may be written:

, (5.70)

. (5.71)

Direct solution in terms of the Bessel function representation is relatively slow. The fast-Hankel
transform was devised by Siegman to provide a faster method[6–9]. This method has proved successful in
many cases but suffers in numerical implementation from a singularity at zero radius in both spatial and
frequency domains and nonlinear sample spacing. The zero radius singularity may be minimized by good
programming but still has results in some mean power uncertainty. This often manifests itself as “edge
droop” or “slopping shoulders” in the diffraction pattern, even for very short propagation steps. The zero
radius singularity makes precise energy conservation difficult. The nonlinear sampling results in higher
sampling densities at the edge of the array which is an advantage in some cases but makes it awkward to
interface with the uniformly sampled points in rectangular array codes such as GLAD. A highly efficient
circular propagator with uniform sample spacing and no zero radius singularity results in excellent energy
conservation. The method is based on a degenerate form of two-dimensional Fourier transform. In the
general case, a two-dimensional Fourier transform is used to calculate a two dimensional frequency
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spectrum of form . If, however, we only need the frequency spectrum along a single row where
, we can simplify the two-dimensional Fourier transform into a sum along the y-direction and a one-

dimensional transform

. (5.72)

where .  is the sum along the y-direction. The y-sum  can be quickly computed
from the center row of the square array  by interpolation to find the values at the various 
points. The projection method based on y-sums may be used to calculate a Hankel transform pair between

 and . Figure Fig. 5.13a illustrates a two-dimensional function a(x,y) in the form of a circular
distribution and Fig. 5.13b shows a scan through the circular distribution, a(x,0) and the y-integrated
function a(x). For an array size of 1024 x 1024 an improvement in speed of between 20 and 40 times may
be realized doing the one-dimensional transformation of a(x) rather than the two-dimensional transforms of
a(x,y). Example 96 illustrates the propagation of circular arrays and compares the accuracy with full two-
dimensional calculations. Fig. 5.14 compares calculations with square and degenerate FFT methods. 
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Fig. 5.13. A circular distribution (a) is represented by a diagonal scan a(x,0) in (b). The y-intregated distribution of 
a(x,0) is  as illustrated by the curved line. One dimensional Fourier transformation of a(x) 
yields a scan through the Frurier transform of a(x,y).
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Fig. 5.14. Illustration of Fresnel number 12 in a 1024 ×1024 array (yellow) and the method of degenerate FFT (green) 
using and a 1024 ×1 array. Some edge droop is evident with the degenerate FFT method due to interpolation.
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6. Optical Systems and Inhomogeneous Media

Geometrical analysis often considers an optical system in terms of its ideal imaging behavior,
describable by paraxial optics and referred to as the stigmatic properties, and the aberrations or non-
stigmatic behavior. One of the definitions of an aberration-free optical system is that its geometrical imaging
properties, as determined by aberration polynomial calculations or the tracing of real rays, agree with the
paraxial behavior. In physical optics propagation, we can proceed in similar fashion and realize a great
simplification of many problems. Often, many optical elements may be combined into a single equivalent
operator and gradient index optics may be treated with the same facility as conventional components.

6.1 ABCD Operators
The matrix method, sometimes called the ABCD matrix method, is a convenient method of defining the

paraxial behavior of an optical system. Some common matrix operators are listed in Table 6.1 for reference
including translation, refraction at a spherical surface, reflection at a spherical surface, refraction in a
quadratic inhomogeneous media, and refraction in the Maxwell's fisheye lens. The ABCD matrix methods
aptly describes the paraxial behavior, the gaussian beam properties, and the general diffraction behavior [1,
3]. By couching the diffraction calculations in terms of geometrical paraxial optics; the calculations can be
simplified and it becomes clear that strongly inhomogeneous media can be as readily treated in the same
fashion as conventional elements. Near-stigmatic systems include, free-space, homogeneous media,
systems of lenses and mirrors, and gradient refractive index (GRIN) optics of all well-behaved types.

The ABCD operators may be written for transformation of ray heights and angles

ray heights and angles, (6.1)

in the manner of Yariv[4] or in terms of reduced lengths and reduced angles

reduced length and optical angles, (6.2)

in the manner of Siegman [1]:

Yariv , and Siegman , (6.3)

where , , , and . In GLAD, Yariv's method is used to show the
true value of the angles explicitly.

An equivalent, elementary optical system can be found for any ABCD matrix. Let the properties of the
first optical space be indicated by the subscript 1 and the properties of the second space by the subscript 2.
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It is assumed that the ABCD matrix consists of four elementary operations: magnification change, change
of index, thin lens of optical power , and a translation of distance 

. (6.4)

One could choose a different set of four primitive operations, for example, by permuting the order of the
matrices, and develop the method in similar fashion to that done here. The elementary operations are
illustrated in Table. 6.1 and illustrated in Fig. 6.1. Siegman describes a generalized diffraction operator using
these ABCD matrices explicitly and alternate approach, [1]. .

. (6.5)

Siegman also considers implementation of phase bias so that the method is comparable to the OO operator
or the II operators, described in Section 3, when no phase bias is used. The method does not lend itself to
crossing the Rayleigh range boundaries and, therefore, is less general. 

Equation (6.4) may be interpreted as finding the image of the original distribution in the local optical
space, and completing the propagation to the desired plane. Provided the apertures in the intervening system
are oversized, there are no diffraction propagation effects in transforming the object space distribution to
the local image—only the magnification and radius change. All diffraction propagation effects will occur in
the single propagation step of distance  using the diffraction propagation theory developed in the previous
section.
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Fig. 6.1. .The paraxial behavior of an arbitrary optical system may be characterized by an ABCD matrix. Any 
ABCD matrix may be factored into four elementary operations change in index change, magnification, and 
divergence and a propagation step.
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The solution for the four free variables of Eq. (6.4) is

, (6.6)

, (6.7)

Table. 6.1. Some ABCD matrix operators

ray vector, ,  is the ray height,  is the angle

translation, ,  is the translation distance

thin lens in air, , thin lens embedded in medium of index ,  

zero power refractive boundary, , powered refractive boundary, 

 and  are the indices before and after refraction,  is the optical power, and 

lens-like media, , , 

Maxwell’s fisheye, , 
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, (6.8)

. (6.9)

The first three steps are quite simple to execute. The last step is a propagation of distance  in general,
noncollimated geometry, as described in Chapter 5. Only this step requires any substantial computation
time.

In the case of propagation to an exact focus point  and the previous treatment is ill-defined
because of the division by 

, (6.10)

, (6.11)

, (6.12)

, (6.13)

. (6.14)

Mirrors, lenses, and refractive surfaces in the paraxial approximation can be modeled using the focal
length of the component. Clearly not all components are aberration free. The aberration may be explicitly
added provided it is known by measurement or calculated analytically or by a ray tracing code. The paraxial
phase effect is

, (6.15)

where  is the complex transmission function,  is the wave number and,  is the mirror radius.
The focal length is defined with respect to the element's effect on the beam

 causes the light to be more convergent,
 causes the light to be more divergent.

For either lenses or mirrors the phase imposed by the element may be applied as a change to the complex
amplitude distribution or as a change to the phase bias, as described by
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Eqs. (5.22) to (5.24). The proper choice is to select the phase bias to achieve the minimum phase
curvature that exists in the complex amplitude to minimize sampling requirements. To determine the proper
choice of sampling condition after the optical element, we calculate the radius of curvature in image space
by the equation,

. (6.16)

Given , we can compute the distance to the waist and the waist radius by Eq. (4.27), as illustrated in
Fig. 6.2. If the distribution has changed from its previous condition of being either inside or outside the
Rayleigh range, then the phase bias should be added or subtracted appropriately in accord with Eqs. (5.22)
to (5.24). Lenses and mirrors may be defined with spherical, cylindrical, or toroidal elements. In the paraxial
approximation, these elements are treated only to second order, so no spherical aberration is imposed. Phase
bias is represented to second order with an  and . If the phase bias is selected so that  and

, there will be no phase bias explicitly in the complex array. Propagation can then be done using the
effective propagation methods described in Chapter 5.

6.1.1 Gradient Index Optics
GRIN elements may be modeled in terms of their paraxial properties in the same fashion as

conventional systems. Once the geometrical paraxial behavior and the aberration properties (if any) are
known GRIN elements are no more difficult to treat analytically than conventional optical systems. The
paraxial ray equations take the form

1
R---

1
R′
-----– 1

f---=

R′

Rx Ry fx Rx=
fy Ry=

Fig. 6.2. A new gaussian waist size and location is determined by an optical element. The distribution at the element 
may be either inside or outside the Rayleigh distance as determined by the new gaussian waist in image space and 
the phase bias should be updated to reflect the new conditions.
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, (6.17)

where  and  are the starting and ending axial positions,  and  are the paraxial ray height and angle,
and  are functions of the index of refraction and constitute the elements of the ABCD matrix.
Marchand gives expressions for tracing paraxial rays is spherical, radial, and axial gradients [2]. The
solutions for lens-like media and for the Maxwell's Fisheye lens are known analytically and are listed in
Table 6.1. ABCD matrices of complex systems may be built up by multiplication in the usual fashion.

6.1.1.1 Quadratic Index Variation
Quadratic index variation may be defined by the index change  at specified normalizing radius 

obeys the equation (see Siegman[1]):

. (6.18)

We have the ABCD solution:

. (6.19)

Consider a collimated beam and a small thickness  of GRIN media. From Eq. (6.18) we have the
wavefront error :

. (6.20)

For the same conditions, the ABCD operator gives the wavefront error  from the C component of Eq.
(6.19). The change in angle from u = 0 for a small thickness of GRIN media is:

. (6.21)

The corresponding radius is  so 

. (6.22)

We see that for a small thickness of GRIN media and collimated incident light the radii calculated from Eqs.
(6.18) and (6.19) are equal .
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Numerical examples

Consider a gradient index of the form,  where , , 

, . For z =.0010 cm, . 

. For  and , .

6.1.2 System Analysis
We shall limit our treatment to separable systems and consider only the y-z plane to simplify the

discussion. Most optical systems are separable, but some, such as those having cylindrical elements at
arbitrary azimuthal angles, are not. Siegman gives a thorough discussion of the use of nonorthogonal
systems by a generalized ABCD matrix[1].

In paraxial optics we identify the concept of an optical space with each region of constant index. Any
plane in one space has an image in each of the other spaces. In non-GRIN system, a separate optical space
is defined for each region of constant index. For GRIN elements we can identify an optical space with each
axial position in the medium. For either type of system, the optical space is considered to be an infinite space
of constant index. Considering one optical space as the object space, we can find an image plane in any other
optical space using the paraxial properties, as indicated by Fig. 6.3. These concepts are commonly applied
for conventional systems. If this is counter-intuitive it may help to consider that a GRIN element can always
be broken up into a sequence of simple lenses, and a conventional optical system consisting of spaces and
lenses may be considered a particularly bizarre GRIN system.

6.2 Beam Propagation Method
The very simplest model of the beam propagation method (BPM) in inhomogeneous media is done

using split-steps of adding the effects of inhomogeneities as aberration and collimated propagation in
homogeneous media. While suitable for very weak index variations and short propagation distances, it is
difficult numerically because the beam changes size in the array due to first order geometric propagation
and the phase curvature may become large. Fig. 6.3a illustrates propagation through gradient media using
collimated BPM. It is difficult to maintain proper sampling and large phase values are manifest in the array.
In addition, it is essential to remember that the wavefront is curved and to evaluate the index of refraction
of off-axis points on the curved wavefront.

A more sophisticated model using noncollimated propagation can be done by modeling the medium as
a series of refractive index changes, elementary lenses, aberration, and homogeneous diffraction steps. The
use of elementary lenses and noncollimated propagation greatly aids the process, as shown in Fig. 6.3b.
Curved reference surfaces help to limit the phase excursions in the computer arrays and noncollimated
propagation methods result maintain good sampling as the beam changes size. The ideal way to set up a
series of lenses and spaces is to use the paraxial behavior as a paradigm. The paraxial ray equivalent of the
noncollimated BPM operations is

n r( ) n0 1 Ar2 2r0
2⁄–( )= A 0.038= r0 0.00525 cm=

n0 1.49= γ2 An0 r0
2⁄ 2054.24 cm 2–= = R 0.4868–  cm=

W r0( ) r0
2 2R⁄ 2.831 5–×10–= = λ0 0.000132 cm= n0 1.49= W r0( ) 0.3196λ–=
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. (6.23)

In more compact notation we have,

, (6.24)

where the subscripts indicate the properties of the respective incremental homogeneous steps. By properly
selecting the index ratio, optical power, and effective propagation length for each step, it is possible, in the
limit, to make the sequence converge to the ABCD matrix. To develop the best sequence of elementary
operations for implementing Eq. (6.16), we can trace a paraxial ray representing the beam size, select an
axial sampling interval (which determines the variables , , etc.) and then calculating the powers of
elements to best approximate the curve trajectory of the ray by a series of straight ray segments, as shown
in Fig. 6.4.

It is obvious that a valid construction of the split step method for diffraction propagation should agree
with paraxial optics. This may be accomplished by proper selection of the free variables in Eq. (6.24). One
of the common tests of diffraction algorithms is to propagate a gaussian beam. If the algorithm fails to meet

Fig. 6.3. In the simplest form, the beam propagation method (BPM)BPM method may be applied as a series of 
collimated propagation steps with index variations treated as aberration (a). Maintaining good sampling through 
the course of the propagation is difficult if the gradient effect is strong. A more sophisticated approach models 
gradient index effects as a series of lenses and spaces (b). This method more readily achieves good sampling but it 
is necessary to define the choice of lenses and spaces by some algorithm or by monitoring the sampling at each 
step in the propagation and determining the best optical sequence step-by-step. The ABCD method allows a step 
of any length to be taken with a single propagation step, irrespective of the complexity, provided the propagation 
may be characterized by paraxial properties (c).
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the paraxial test, it will certainly not propagate a gaussian beam correctly and will therefore fail this
elementary test of diffraction accuracy. The disadvantage of Eq. (6.24) is that a diffraction propagation is
needed for each thickness operator, leading to a large number of propagation steps.

By replacing the paradigm of an infinite series of incremental lenses and spacings with the paraxial
operator, we have the generalized BPM. The use of four free variables in Eq. (6.4) allows an exact match to
paraxial behavior, even over long propagation steps. This method may be applied in exactly the same
fashion for conventional and GRIN optics the only difference being in the calculation of aberrations and the
details of the ABCD matrix. For stigmatic media the aberration step may be eliminated and the equivalent
ABCD matrix for propagation of any length may be computed and only one propagation step used, as
illustrated in Fig. 6.3c. Even for significant aberration, only a few steps may be required, as discussed more
fully below.

6.3 Non-Stigmatic Effects
Extending the homogeneous diffraction equations to include all types of stigmatic media does not, of

course, obviate the need to interrupt the diffraction calculation to include aberration, apertures,
nonlinearities, etc. However, aberration-free GRIN media need not be considered by the split step method.
For GRIN media with aberrations of the form , the index variations should be split into stigmatic
and non-stigmatic parts of the form

, (6.25)

where  and  are the stigmatic and error components. Some judgment may be required in the selection
of the stigmatic component. Given experimental data, it may be necessary to find a “best fit’ of the free
variables of the selected ideal element. For example with the Maxwell's fisheye, the free variables may be
the best center of symmetry , center index , and focal length  with the functional form

Fig. 6.4. A curved ray path may be approximated by a series of straight line segments. The power of each element 
is adjusted to put the ray in the next optical space to best match the curve in that segment.
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. (6.26)

Presumably the residual function  is a small percentage of the stigmatic component. The
aberration may be determined by integrating along the optical rays

, (6.27)

where  indicates the ray path. This is equivalent to calculating the effect of collimated light going through
a slab of glass with slight inhomogeneities. If the magnitude and spatial frequency components of the index
variations are modest, the aberrations may be lumped into a single plane at the beginning of the propagation.

Even an ideal component may exhibit aberrations because of the local phase of the field which is
incident on the lens. Since the local phase is partly determined by diffraction propagation, the aberration
calculation should consider these local phase variations. This is true for both conventional and GRIN
elements. The aberration properties of most elements are not strongly altered by slight changes of the local
phase and this affect is generally neglected. In any case, the methods described in this paper neither alleviate
nor exacerbate this small source of error.

6.4 High Numerical Aperture Lenses
Fresnel diffraction theory is not adequate to treat high numerical aperture objective lenses. A vector

diffraction treatment will show an elliptical shape to the far-field image for a linearly polarized incident
field. Vector diffraction calculations may be implemented with varying degrees of sophistication—enabling
the accurate treatment of larger numerical apertures for the more sophisticated models. See Fig. 6.5. The
method employed by the command HIGNA is based on dipole projection. The incident field is assumed to
have minimum angular spread and to be well represented by the two transverse components of the electric
field,

incident field = . (6.28)

The effect of refraction is to redirect the optical ray so that it heads toward the image point. The electric field
components now have the form,

refracted field = , (6.29)

where , , and  represent the coordinate system along the refracted ray. The optical fields at the image
are taken with respect to the unrotated coordinate system designated by , , and . We may write the
refracted field as,

N x y z, ,( )
n0

1
x x0–( )2 y y0–( )2 z z0–( )2+ +

f2---------------------------------------------------------------------------+

------------------------------------------------------------------------------------=

ne x y x, ,( )
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0

Δs
 ds=

s

Exx̂ Exŷ+

Exx'ˆ Exy'ˆ 0z'ˆ+ +

x′ y′ z′
x̂ ŷ ẑ
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refracted field = . (6.30)

where  is the rotation matrix. The projection of  and  onto the unrotated coordinate system
determines the effect on the image distribution. The electric components of the refracted radiation in the
unrotated coordinate system are

refracted field . (6.31)

The matrix  is the rotational matrix which transforms the initial coordinate system to the rotated
coordinate system. This matrix may be found by expressing the transverse position of the ray in the pupil in
terms of the polar angles  and  such that

Fig. 6.5. Sketch of dipole projection theory of vector diffraction imaging. A distribution is incident from the left to 
a high numerical aperture lens. Consider dipoles in the , , and  directions for the incident radiation. After 
refraction, the coordinate system is rotated, taking the form, , , and . The primed system projects onto the 
original system causing mixing of polarization states, including projection of the transverse components onto the  
axis. Each point in the pupil is designated by the radial and azimuthal angles,  θ and φ respectively.
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ŷ

ẑ
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, (6.32)

where  and  is the focal length. The rotational matrix is found from

. (6.33)

Rotations about the x-, y-, and z-axes are defined to be

, (6.34a)

, (6.34b)

. (6.34c)

The composite rotation is

. (6.35)

6.5 Optical Systems
Geometrical optics design is used to correct the aberrations of a system for a specific object-image

conjugate pair. Consider Fig. 6.6, geometrical analysis is capable of calculating the aberrations of the
system. Presumably, the system is relatively well-corrected at the image point, but the aberration may be
large at intermediate image points. Large but compensating aberrations are easily handled in geometrical
optics but not in physical optics, where the wavefront slopes must be resolved at all points. The best method
of modeling such systems, is to combine geometrical and physical optics methods. The system is ray traced
to find the aberrations and the paraxial behavior, including the location and size of the entrance pupil, as
shown in the lower schematic of Fig. 6.6. The equivalent system may be represented by operators where
only the B elements indicate diffraction steps. Assuming the calculation begins at the object and the entrance
pupil is a distance  in front of the object, the system may be represented by
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system ABCD operator = , (6.36)

where  is the optical power of the system. By inspecting the B-terms, we see that the only propagation
steps are  and . If the clear aperture and aberration are omitted, then these steps exactly cancel so we
will see excellent numerical behavior. Even with an aperture of finite size and aberration typical of a
corrected optical system, the numerical performance will be excellent.

Information to be transferred:
• ABCD matrix, abcd/operator,
• optical path length (OPL),
• coordinate transformation, global/operator,
• aberration added at exit pupil, abr/zern/number,
• clipping apertures, superimposed or separated.

Fig. 6.6. Consider a schematic of an optical system as shown above. In geometrical analysis, we trace rays from the 
object to the image and calculate the aberrations. Each component may introduce substantial aberration, but in the 
well-corrected system all aberrations cancel for the complete system. For physical optics, the large amount of 
aberration due to the individual elements induces aliasing in the intermediate optical spaces. In physical optics it is 
more accurate and much faster to represent the system by an optical equivalent consisting of an entrance pupil, 
aberration, and an ABCD operator representing the transformation from object plane to image plane. We propagate 
from the object to the entrance pupil, apply an aperture representing the entrance pupil size, aberration, propagate 
back to the object, and then transform from object to image planes.
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7. Aberration

In the previous sections we have treated the optical system as ideal without consideration of aberration
or apertures. Proper treatment of aberrations is one of the most important application of optical modeling
methods. Aberration may be introduced by the intrinsic design of the optical configuration, by
manufacturing errors, by inhomogeneous index of refraction, self-focusing, thermal blooming, and other
effects. Aberration may be removed by spatial filters and other aperturing effects.

7.1 Aberration Polynomials
The phase errors of lenses, mirrors, windows, and media of variable index of refraction can be

represented by aberration polynomials. The aberration is introduced into the complex amplitude distribution
by

, (7.1)

where  is the wave number and  is the aberration function.
The classical Seidel polynomials are much used in the study of rotationally symmetrical optical systems

and are useful for low order aberration. If they are generalized to allow arbitrary azimuthal orientation, they
also do a good job of modeling simple component aberration due to misalignment or distortion of an
element. These aberrations have the form listed in Table 7.1. Figure 7.1a shows spherical aberration. Figure
7.1b shows a combination of spherical aberration and astigmatism.

Also, listed in Table 7.1 is the general form of the Zernike aberrations which are frequently used to
characterize manufacturing error or wavefront error. Zernike aberrations may be calculated from
interferometric data using readily available computer software. Fig. 7.2a shows Zernike aberration of a
mixture of high order polynomials with the same aberration shown as a contour plot in Fig. 7.2b.

a x y,( ) a x y,( )ejkW x y,( )→

k W x y,( )

Fig. 7.1a. Spherical aberration of a circular pupil 
function shown in the form of an isometric plot.

Fig. 7.1b. Spherical aberration (the same as Fig. 7.1a) 
plus astigmatism on a circular aperture.
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7.2 Random Aberration
Very frequently the exact characteristics of the aberration are not known. We may not have information

on the manufacturing error of components either because they have not been measured or the design process
is still in the process of definition and only the specifications are known. In either case, the modeling may

Table. 7.1. Seidel and Zernike aberration polynomials.  and  are the pupil coordinates,  is the radius 
for normalization of the pupil.
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Fig. 7.2a. Higher order Zernike polynomial aberration. Fig. 7.2b. Higher order Zernike polynomial aberration.
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proceed on the basis of smoothed random wavefronts which are constructed to meet the specifications.
Atmospheric turbulence is a special type of random wavefront, which conforms to certain special statistics.

7.2.1 Generation of Random Aberration
The random wavefront should have the requisite autocorrelation radius and RMS or peak-to-valley

wavefront error. For a stationary process, i.e., one whose statistics are independent of spatial coordinates,
the autocorrelation function is 

. (7.2)

The characteristic width of the autocorrelation function is called the autocorrelation width. If the phase is
relatively slowly varying across the aperture the autocorrelation width is large. To construct the random
wavefront with the correct autocorrelation function, we first construct a delta-correlated wavefront, i.e., one
with no correlation between points in the array,

, (7.3)

where  is the wavefront variance and  is a delta-correlated array
This can be done by generating random numbers for each point in the array in a manner illustrated in

Fig. 7.3. We can smooth  to meet the required specifications. The smoothing operation is

, (7.4)

where  is a normalized smoothing function and  represents two-dimensional convolution.
The autocorrelation function of the smoothed wavefront,  is

, (7.5)

. (7.6)

Moving the statistical averaging inside the integral to address only the stochastic terms we have

, (7.7)

, (7.8)

, (7.9)
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where  represents two-dimensional complex autocorrelation. Selecting the smoothing function to have
an autocorrelation function radius of  (and to be normalized) to be

. (7.10)

Figures 7.4a and 7.4b show random aberration created forming a set of completely uncorrelated phase
points and then smoothing to the desired autocorrelation function. Figure 7.4a has a relatively broad
autocorrelation radius and Fig. 7.4b shows an autocorrelation diameter of half the size of Fig. 7.4a. Random
aberration can be used to simulate the effects of manufacturing aberration. The amplitude of the aberration
and the autocorrelation width can be adjusted to fit the type of aberration expected from the manufacturing
process if it is known or to fit specification values.

7.2.2 Atmospheric Aberration
The atmospheric turbulence model is based on an angular spectrum model which is readily implemented

and which is readily interfaced with the adaptive optics model. Hufnagel and Stanley established a Fouier
optics method of analysis[1]. Hogge and Butts approached the same subject through Zernike
polynomials[2]. Fried made significant contributions including the seeing constant commonly known as
Fried’s parameter[3]. Rodier has provided a general overview of the subject[4]. Issue of inner and outer

Fig. 7.3. The random wavefront is constructed from a delta-correlated wavefront generated from a sequence of 
random numbers. The delta-correlated wavefront is smoothed to create a wavefront with the desired statistics.
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scale have been addressed by Lutomirski and Yura[5]. More recent work by Krapels, et. al., specifically
addresses modeling[6] and by Sadot describes experimental valdiation[7]. There has been a lack of
agreement among atmospheric experts with regard to proper treatment of atmospheric outer scale. This
leads to uncertainty in atmospheric tilt and piston error which is problematic for uncorrected systems and
for large phased arrays but not for adaptively corrected systems. 

Atmospheric aberration is described by the Kolmogorov spectral distribution. The aberration is
described by an integral over the altitude in the atmosphere as described by Roddier[4]

, (7.11)

where  is the refractive index structure constant of the atmosphere as a function of altitude,  is the
altitude in meters,  is the spatial frequency variable,  is the wavelength, and  is the power
spectrum of the wavefront. We may characterize the aberration by the autocorrelation diameter, ,
sometimes known as Fried's parameter

. (7.12)

Fried's parameter may then be used to calculate the wavefront 

. (7.13)

Fig. 7.4a. The random wavefront is constructed from a 
delta-correlated wavefront generated from a sequence 
random numbers. The delta-correlated wavefront is 
smoothed to create a wavefront with the desired 
statistics.

Fig. 7.4b. Random aberration formed with a narrow 
autocorrelation width. The aberration was formed from 
the same set of random numbers as Fig. 7.4a, but was 
given less smoothing. By controlling the amplitude of 
the aberration and the degree of smoothing, the type of 
aberration may be controlled.
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The inner and outer scale may be included according to Lutomirski and Yura[5],

, (7.14)

where  is the outer scale, and  is the inner scale, and  is the seeing parameter (Fried’s parameter).
These parameters are in radians, meters, and inverse meters respectively.  is generally considered to be
several meters and  to be on the order of centimeters or less.

From the relationships described above, we can see that it is possible to characterize the atmospheric
aberration by Fried's parameter. It is natural therefore to separate the problem of atmospheric
characterization into three parts: 1) determination of the effects of various levels of atmosphere in terms of

 values for each level, 2) summation of the  values, and 3) implementation of aberration using the 
parameter. The summation of the  values over different levels takes the form

. (7.15)

Propagation over large distances is accomplished by taking short steps of simple diffraction alternating with
short steps of aberration introduction. Figure 7.5 shows a typical atmospheric aberration phase sheet.
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Fig. 7.5. Schematic of propagation through the air where aberration and diffraction propagation must be 
considered. The propagation is done in relatively short steps with the diffraction propagation and addition of 
aberration alternated to achieve an approximation to a continuous process.
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7.3 Beam Quality Measurement
Beam quality can be measured in a variety ways. There is no method which is best for all applications.

The user should carefully consider the requirements of the design and then select the method which is most
appropriate; or devise a new method specifically suited to the task at hand. 

7.3.1 Strehl Ratio
The Strehl ratio is commonly defined as the ratio of the peak image intensity in the far-field with

aberrations to the peak image intensity in the far-field without aberration. In GLAD Strehl ratio may be
calculated with the strehl command. It is convenient to use a modified version of Strehl ratio consisting
of the ratio of the center of the far-field intensity with aberration to the far-field intensity with no aberrations.
The far-field intensity is

. (7.16)

The far-field intensity of the same intensity distribution, without aberrations is

. (7.17)

Evaluating these at  and  the Fresnel kernel disappears, and we have

. (7.18)

This expression is readily evaluated by integration across the complex amplitude of the beam, and does not
explicitly require propagation to the far-field.

7.3.2 Wavefront Variance
Another common measure of performance is the wavefront variance, calculated in GLAD with the

variance command

. (7.19)

The above expression is appropriate for an aperture which is either 100% or 0% transmitting but does not
treat the general complex amplitude distribution.

A well-known relationship between Strehl ratio and wavefront variance is
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 and . (7.20)

7.3.3 Optical Transfer Function
The Optical Transfer Function (OTF) is the Fourier transform of the image irradiance or, equivalently

the autocorrelation of the pupil function. In GLAD, use the OTF command, as illustrated in Ex. 65 and
shown in Figs. 7.6a and 7.6b. The units of the OTF are cycles/cm.

, (7.21)

where  is the image irradiance.
Alternatively, we may evaluate the OTF in the pupil using the normalized autocorrelation:

, , . (7.22)

The OTF is very commonly used in image evaluation in lens design.

7.3.4 Autocorrelation Function
The autocorrelation function is useful to determine the statistical characteristics of a random speckle

pattern. Fig. 7.7 and 7.8 illustrate the typical form of the autocorrelation function. Both the typical speckle
size and the typical DC level may be determined. The autocorrelation command implements this
function, as illustrated Ex. in 88f.

SR e 4π2σ2–≈ σ2 SR( )ln
4π2-----------------–≈

Fig. 7.6a. Diffraction-limited image of f/5 beam. Fig. 7.6b. OTF of f/5 image.
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7.3.5 Irradiance Uniformity
The degree of irradiance nonuniformity is of importance in photolithographic illumination systems

using coherent or partially coherent light. Nonuniformity may be calculated with the uniformity
command, according to

, (7.23)

where  indicates a spatial average and the irradiance is . This definition of irradiance nonuniformity
can give a value greater than 100%, A random speckle pattern has a nonuniformity of about 100%. Fig. 7.9
illustrates a random pattern that is 100% modulated. Fig. 7.10 shows the result of summation of 100
statistically identical patterns.

7.4 Beam Size Measurement
Beam size in the far-field is often used as a measure of beam quality. This may seem a logical choice

for measurement, if the focusability of the beam is important to the application of interest. Some care must

Fig. 7.7. The autocorrelation function of an unbounded speckle pattern has a DC level determined by the , the 
standard deviation of irradiance nonuniformity and a bump in the center which is determined by the typical speckle 
size.
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be exercised since beam size is both difficult to measure (either experimentally or numerically). A second
reason is that for near-diffraction-limited systems, the size of the central lobe of the diffraction pattern is
relatively insensitive to the aberrations in the pupil. Phase aberrations in the pupil cause scattering into the
outer rings of the far-field diffraction pattern. The central lobe decreases in height, according to the energy
loss into the outer rings, but does not appreciably change width. It is for this reason, more appropriate to
measure the energy within a region corresponding to the size of the central lobe rather than the width of the
central lobe. Both Strehl ratio and power-in-the-bucket (PIB) are measurements of this type. It is regrettable
that some experimentalists still report in the journals the width of the central lobe of their system to describe
their beam quality. They inevitably find that the full-width-half-maximum (FWHM) of their beam is the
same as the diffraction-limited spot and are pleased and surprised to conclude that their beam is, therefore,
diffraction-limited.

As with any single number of performance, beam width does not provide a complete description of the
beam. Single number measurements may be used to determine pass-fail conditions, but are not useful to
diagnose the nature of the aberrations which may be present. Measurement of beam width is generally not
helpful in determining what corrections should be made to the system. They also are not very useful for
alignment. The most powerful method of diagnosis is interferometry to determine the phase aberrations in
the pupil. It may seem more direct to make measurements in the far-field, if we wish to specify far-field
performance. However, defects in the far-field irradiance are very often due to phase aberrations in the pupil.
It is quite difficult to determine phase aberrations from image irradiance, because the vital phase information

Fig. 7.8. For a finite size clear aperture the irradiance nonuniformity manifests itself as a drop from the 
autocorrelation of the uniformly filled aperture.
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is lost by the square law detector used to measure irradiance. Hence, interferometry is greatly preferred for
diagnosis. Ideally, the irradiance in the pupil plane should also be measured to completely determine the
complex amplitude state of the beam. From this information, and using the diffraction capabilities in GLAD
all aspects of the beam may be determined.

If one is determined to measure the beam size, then an appropriate definition of beam size must be
established. Seigman has recommended a measure called . This is essentially the same as measuring the
second spatial moment irradiance:

, (7.24)

where  is the centroid. The standard deviation in the spatial domain  and the comparable standard
deviation in the frequency domain:

Fig. 7.9. A speckle pattern with 100% nonuniformity. This distribution was calculated by Ex88c.inp.
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. (7.25)

We find  from

. (7.26)

For a perfect gaussian beam we have  and . For imperfect beams . This
definition is based on calculation of standard deviation—an easy task for well-behaved analytical functions,
most particularly the Hermite-gaussians—but a very difficult task for real beams because of the
susceptibility to noise. Noise is inevitable in both numerical calculations and physical measurements.
Consider the addition of a uniform noise source to the calculation of variance:

Fig. 7.10. A speckle pattern with 10% nonuniformity due to the incoherent summation of 100 different speckle 
patterns, from Ex88c.inp.
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. (7.27)

Unfortunately,  for any finite value of noise, because of the weighting by . The quadratic
weighting is such a strong effect that it makes calculation of the variance extremely inaccurate.

Although the concept has no distinguished scientists as advocates, the average radius radius is found to
be a much more reasonable measure of beam radius:

(7.28)

For a gaussian beam

(7.29)

We may use the average radius as an alternate method of calculating 

(7.30)

where  is the average radius of the frequency spectrum with dimensions of inverse length.
An effective wavelength, as discussed in Section 5.3.4, may be calculated from 

(7.31)

7.5 References
1. R. E. Hufnagel and N. R. Stanley, “Modulation transfer function associated with image transmission

trough turbulent media,” J. Opt. Soc. Am., 54, 52–61 (1964).

2. C. Barry Hogge and R. Russell Butts, “Frequency Spectra for Geometric Representation of Wavefront
Distortions Due to Atmospheric Turbulence,” IEEE Transactions on Antennas and Propagation, Vol.
AP-24, No. 2, 144–154 (March, 1976).

3. D. L. Fried, “Optical resolution through a randomly inhomogenous medium for very long and very
short exposure times,” J. Opt. Soc., Am, 56, 1372–1379 (1966).

σxT

i x y,( ) iN x y,( )+( )
∞–

∞


∞–

∞

 x x–( )2dxdy

i x y,( ) iN x y,( )+( )
∞–

∞


∞–

∞

 dxdy

---------------------------------------------------------------------------------------- σx
2 σN

2+= =

σN
2 ∞→ x2

rx

i x y,( )
∞–

∞


∞–

∞

 x x– dxdy

i x y,( )
∞–

∞


∞–

∞

 dxdy

------------------------------------------------------=

rx
2
π
---σx=

M2

M2 2π2rxrsx
=

rsx
M2

λeff
λ

-------- M2=
Jump to:  Com
 , mands  Examples



96 GLAD Theory Manual
4. F. Roddier, “The Effects of Atmospheric Turbulence in Optical Astronomy,” E. Wolfe, Ed., Progress
in Optics XIX, North-Holland (1981).

5. R. F. Lutomirski and H. T. Yura, “Aperture Averaging Factor for a Fluctuating Light Signal.” J. Opt.
Soc. Am., Vol. 59, No. 9, pp 1247–1248 (1969).

6. K. Krapels, R. G. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, “Atmospheric
turbulence modulation transfer function for infrared target acquisition modeling,” Opt. Eng. 40(9)
1906-1913 (2001).

7. D. Sadot, D. Shemtov, and N. S. Kopeika, “Theoretical and experimental investigation of image
quality through an inhomogeneous turbulent medium,” Waves Random Media 4(2), 177-189 (1994).
Jump to: ,  Commands  Examples



8. Resonators and Lasers

In this section, modeling of optical resonators is discussed. Resonators may be classified as either stable
or unstable. Stable resonators were the first ones developed because they can be made to lase in low gain
media. Stable resonators are distinguished by having a stable geometric mode. Typically these devices have
low diffraction losses. As a consequence they are very slow to converge. Unstable resonators are not
geometrically stable and generally have high losses. These devices are very useful for high gain media and
have the important property that high beam quality is achievable. 

8.1 Bare-Cavity Resonators
If we represent the starting complex amplitude distribution by , the complex amplitude distribution

after one pass by , and the transformation operation ; then the resonator operation is 

. (8.1)

For special  functions called eigenfunctions, we have the relationship

, (8.2)

where  is a scalar, complex coefficient called the eigenvalue. In the general case, there are an infinite
number of eigenfunctions, each with its own eigenvalue. Both stable and unstable resonators are
characterized by having eigenfunctions and eigenvalues which represent the round-trip loss coefficients.
Many sophisticated methods of analysis have been developed which can find not only the lowest-loss modes
but higher order modes as well. We state without proof that the eigenmodes are orthogonal and are a
complete set. A combination of eigenmodes may be used to represent an arbitrary complex amplitude
distribution in the resonator.

The lowest-loss mode is readily found with a physical optics code. The principle for finding these
modes is simply that any arbitrary starting distribution may be fit to a set of resonator modes. Let 
be the starting distribution, then

, (8.3)

where  are the coefficients which result in the best fit of the eigenmode function set to the starting
distribution. If  are the eigenvalues, then after  round trips the distribution in the resonator is 

. (8.4)
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After a suitable number of passes, the mode with the largest eigenvalue will be the dominant term

, (8.5)

where it is assumed that  is the lowest-loss mode. In most cases this is the lowest order mode .
Provided the starting function has at least some finite amount of , i.e., , the resonator will, in due
course, converge to the lowest-loss mode. The selectivity is due to the apertures of the resonator. If one
attempts to model a resonator numerically by setting up the mirrors with the proper focal lengths and
spacings but does not include apertures, then all the eigenvalues will meet the condition  and the
calculation will never converge. The diffraction loss at the apertures is what causes mode selectivity. 

For modeling bare-cavity stable resonators it is convenient to include an energy renormalization at each
cycle. For unstable resonators the round trip magnification is not unity. A rescale at the end of each cycle is
necessary in addition to the energy renormalization to keep the matrix units of the problem constant. The
gain medium will affect the transverse mode solution by nonlinear saturation effects and by the finite extent
of its volume.

8.1.1 Flat-Flat Resonators
Perhaps the first resonator one might consider consists of two flat mirrors. The flat-flat resonator was

prominent in the early laser investigations and is still employed from time to time. In fact, this configuration
is beset with problems. Geometrically, it is easily understood that a ray which is at a slight axis to the mirror
normals will “walk-off” the configuration. A similar walk-off occurs if the mirror are not perfectly parallel.
Even in numerical analysis, where the alignment may be made ideal, flat-flat mirrors are prone to
convergence difficulties.

Consider an example of a flat-flat resonator. A uniform beam is injected into the device and mode
structure is observed during the 29 round trips needed to achieve convergence to 0.5%. The configuration
is shown in Fig. 8.1 and the parameters are given in Table 8.1. The initial commands (as listed in Fig. 8.2)
establish a 32 x 32 array, the wavelength at 10.6 microns, and a choice for the units (spacing between matrix
points) of 0.15 cm. The beam is initially established as uniform intensity and a clear aperture is imposed.
The energy in the beam is normalized to unit value. The command geodata is used to specify the surrogate
gaussian beam properties to override the automatic determination.    

φm x y,( ) ajcj
mψj x y,( )≈

ψj ψ0
ψj aj 0≠

cn 1=

Fig. 8.1. Elementary resonator consisting of flat mirrors.
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Jump to: ,  Commands  Exampl
es



99
The cyclical behavior of the resonator is modeled by using a macro. The macro may be executed any
number of times. A convergence test is used to exit from the macro if the energy is sufficiently converged.
The integer register keeps track of the pass number. The real register is used for the x-coordinate of the
summary plot made by plot/udata. The prop command does the propagation. geodata reestablishes
the surrogate gaussian beam parameters—in effect overriding the automatic algorithm selection and
insuring that each pass has exactly the same numerical treatment. 

The energy at the end of a round trip is stored. A running average of the energy values is taken. When
the running average is changing less than the amount established in gain/convergence/set (on the next page),
the program exits from the macro. After the macro is defined, the macro is called for 40 executions. The
round-trip loss is plotted in Fig. 8.3. The evolution of the transverse mode is given in Fig. 8.4. The device
converges to 0.005 in 29 cycles. The transverse mode structure is changing appreciably during the first few
round trips then goes through some strange gyrations before finally stabilizing to a near-gaussian form.
After about 20 round trips, the transverse mode is well established to a near-gaussian mode. The relatively
rapid convergence is not typical of stable devices. This example was deliberately designed with under-sized
mirrors to assure rapid convergence.   

8.1.2 Stable Resonators
The basic properties of resonators are determined from the first-order properties of the system. The

ABCD matrix provides an especially convenient theoretical description of matrices. Siegman in Lasers
presents an excellent discussion of eigenvalues and eigenmodes in Chaps. 15 and 16. The paraxial properties
of the resonator determine the diffraction behavior. Siegman shows that the conditions of stability
determined from diffraction theory using the Hermite-gaussian modes is exactly the same as for the paraxial
behavior. In this section we shall only consider the paraxial ray behavior.

Let the first-order ray be characterized by

, (8.6)

where  is the ray height above the axis and  is the optical angle. The ABCD matrix may be represented
as the system matrix ,

. (8.7)

Table. 8.1. Parameters or flat mirror resonator.

length 30 meters

aperture radius 1 cm

wavelength 1 µ
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The eigenequation is

. (8.8)

This is equivalent to the expression,

, (8.9)

Fig. 8.2. Input commands for flat-flat mirror resonator.

c
c Flat mirror resonator
c
variab/dec/int pass STOP
array/s 1 32 # choose small array for fast execution
color 0 10.6 # set wavelengths
units 0 .15 # guess at units
clear 1 1 # start with uniform intensity
clap/c/c 1 1. # initial aperture
energy/norm 1 1 # normalize energy
c
c Force surrogate gaussian beam properties
c
c bean no. zwaistx zwaisty waistx waisty iplanex iplaney
 geodata 1 0 0 2 2 1 1 1 1
plot/w hmwka.plt
plot/l
title start
macro/def hmwk/o
 pass = pass + 1 # increment pass counter
 step = step + 1 # increment step number
 prop 3000
 mirror/flat
 clap/c/c 1 1. # 1.0 cm. radius aperture
 geodata 1 0 0 2 2 1 1 1 1 # reset gaussian beam
 prop 3000
 mirror/flat
 clap/c/c 1 1. # 1.0 cm. radius aperture
 geodata 1 0 0 2 2 1 1 1 1 # reset gaussian beam
 energy # calculate energy in the beams
 title Mirror 2
 plot/d hmwk@pass.plt/o # off-line plot
 plot/l
 plot/w hmwkb.plt/o # off-line plot
 plot/l
 variab/set/param Energy 1 energy
 Energy = Energy - 1 # calculate energy difference
 udata/set pass step Energy # store energy differences
 plot/w hmwka.plt
 title Energy loss per pass
 plot/udata first=1 last=1
 gain/converge/test 1 STOP # test for convergence
 pause 2 # pause for 2 seconds to see data
 energy/norm 1 1 # renormalize energy
 if STOP macro/exit # exit from macro on convergence
macro/end
pass = 0 ; step = 0 # initialize variables
gain/converge/set eps1=.005 3 # set convergence criterion to
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M λI–( )r 0=
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where  is the identity matrix. Non-trivial solutions of Eq. (8.9), i.e., those with , occur if and only if
,

. (8.10)

Taking note that . We define the m-parameter or stability criterion as,

. (8.11)

The roots of Eq. (8.10) are

. (8.12)

We note that . More specifically, if 

, (8.13)

Fig. 8.3. Convergence after about 29 round trips.
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the system is stable and we can write Eq. (8.12) as,

. (8.14)

Fig. 8.4. Transverse mode after various passes through the flat-flat resonator of Fig. 8.1. Note that passes 1 through 
5 are similar and that a mode transition occurs during passes 7 through 9.

After Pass 1 After Pass 2

After Pass 3 After Pass 5

After Pass 7 After Pass 9
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The eigenvalues are unit value phasors and are mutually conjugate.
Because the eigenvectors are, in general, not strictly real, there are no single pass eigensolutions for real

paraxial rays. If there exists  such that , then there are real paraxial ray eigensolutions for 
systems joined together to form a composite system identified as  such that in relation to the elementary
system it has the property that . Such a real ray is then an eigensolution of a system consisting
of  elementary systems.

The eigenvectors may be found by forming the modal matrix which is

modal matrix= . (8.15)

The eigenvectors are therefore,

 and . (8.16)

Fig. 8.4a. Transverse mode after various passes through the flat-flat resonator of Fig. 8.1. The transition begun at 
about pass 5 stabilizes at about pass 20 to a near-gaussian form.
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An arbitrary input may represented as a sum of eigenfunctions,

. (8.17)

For the specific case of geometrical rays where there are just two solutions. An arbitrary initial ray vector
 may be written in terms of the two eigenvectors

. (8.18)

After  cycles the ray vector is,

, (8.19)

where , which may be considered the input slope vector.
Equation (8.14) indicates oscillatory behavior. The m-parameter,

, (8.20)

guarantees stable performance if . The oscillatory behavior vanishes for  and —at the
limits of stability.

The treatment above allows analysis of very general devices. There is, in principle, no limit to the
complexity of the system. If the round trip ABCD system matrix is known, the stability can be determined.
A less general treatment is often given which uses the g-parameters

, , (8.21)

where the sign convention traditional in resonator theory is that  is positive if the mirrors are concave-
inward and Mirror 1 is on the left and Mirror 2 is on the right, as illustrated in Fig. 8.5.

Using the g-parameters, the stability criterion is

. (8.22)

While the upper limit of stability for the g-parameter is the same as for the m-parameter at unity (see Eq.
8.13, the numeric value of  is not the same as  within the stable regime. The m-parameter has the
advantage that it may be applied to any system no matter how complex, whereas the g-parameter is restricted
to the two-mirror case.

For a symmetrical system consisting of two concave mirrors, we have stability if the centers of
curvature overlap, i.e., if  is to the left of , where  and  are the centers of curvature. We can,
therefore, tell at a glance whether a two-mirror system is stable.
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A ray, in a stable system, will oscillate forever, provided the mirror apertures are sufficiently large. If
we adjust the system so that , then  and the rate of oscillation goes to zero. These conditions
arise, for example for either planar mirrors or concentric mirrors. Both are at the stability limit. For plane
mirrors, the points  and  approach  and  respectively. At infinity, these points are identical and
there in no overlap, i.e., the stability criterion is not met. Slight misalignment of the plane mirrors causes
the ray to walk off sideways. Slight misalignment of the concentric system causes the rays to rotate until the
ray misses the apertures.

As ,  which occurs along both the vertical and horizontal axes, one of the mirrors lies
at the center of curvature and the oscillation will be at a maximum rate. Consider a flat mirror at the center
of curvature of the other mirror. The system is completely insensitive to rotation of the flat mirror, but axial
translation of the flat mirror can cause instability.

The regions of stability and unstability can be mapped into g-parameter space, as shown in Fig. 8.6. A
resonator is stable if it lies between the horizontal or vertical axes and the two sheets of the hyperbola
defined by  and the horizontal and vertical lines for  and . 

Three special conditions are of particular interest: two plane parallel mirrors, confocal symmetrical, and
concentric. The later two types are marginally stable. 

We can represent the gaussian beam in terms of the reduced gaussian complex radius or q-parameter,

. (8.23)

From first-order optics we have the relationship,

, (8.24)

A similar equation holds for the q-parameter—the complex radius.

Fig. 8.5. Elementary two-mirror resonator. The two mirrors shown have positive radii according to the special sign 
convention used for resonators.
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. (8.25)

To find the gaussian eigenmode solution, we solve Eq. (8.25),with the solutions,

. (8.26)

Given the eigenmode q-parameter, the local transverse radius and phasor radius are determined by,

Fig. 8.6. Stability diagram for  and  The region between the axes and the two sections of the hyperbolic curves 
is stable. All other points are unstable.
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, , (8.27)

and the waist properties determined by,

, . (8.28)

First, we note that Eq. (8.26) has the same condition for existence as the paraxial ray solution for
stability. We choose the root that gives a negative imaginary part—the other root leads to a solution which
does not fall off away from the axis.

Once we have the gaussian eigenfunction, we have solved for the lowest-loss gaussian mode. For many
stable resonator configurations, this elementary analysis gives an accurate answer. The calculation is very
easy to implement on a spread sheet program. In designing and analyzing a stable resonator my first step is
to build a spread sheet model of the problem to verify stability and to establish the locations of waists and
the size of the beam at various points.

It is important to consider that the gaussian mode was determined using only the optical powers and
spacings. The aperture size played no role. Such an idealized device would have no losses and therefore no
mode selectivity. We could get an approximate idea of the losses by considering the relative size of the
gaussian eigenmode at each aperture and determining the magnitude of the clipping.

It is relatively easy to test a numerical configuration for stability by propagating a gaussian beam. We
can create a gaussian beam with waist at the proper position and correct beam radius. No apertures are used
in this numerical check. The beam is propagated through several round trips and the beam size is checked
at each point. If the beam size is not exactly reproduced, the resonator can be adjusted by varying the
distance or radius of one of the mirrors.

The first example is a stable resonator with circular mirrors, as shown in Fig. 8.7.a. The configuration
consists of a flat mirror and a concave spherical mirror of radius 50 cm. The mirrors are separated by 45 cm.
The parameters are summarized in Table 8.2.
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Table. 8.2. Parameters for stable resonator example.

length 45 cm

mirror radius 50 cm

wavelength 1.064 µ

Rayleigh range 15 cm

waist radius 0.02253936 cm

aperture radius 0.14 cm
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It is important to establish a geometrically stable resonator before attempting to calculate the diffraction
performance. A surrogate gaussian beam is used to determine the switching of the propagation algorithms.
If the surrogate gaussian is not set to the geometric resonant condition, the parameters will oscillate without
damping. In principal the diffractive performance would be unaffected. Because of sampling limitations an
oscillation in the selection of propagation algorithms will perturb the diffractive mode significantly—
preventing convergence.

Under these conditions, an actual distribution may be used as a seed to find the diffractive transverse
mode as determined by the apertures and aberrations, if any. In this example, Beam 1 is started with the ideal
geometric mode as a seed and Beam 2 is started with a uniform intensity distribution. Beam 1 converges
almost immediately to 0.09 percent loss per pass for the aperture radius of 0.14 cm. Beam 2 takes about 90
passes to converge to within 0.1 percent. In this example two beams were used simultaneously. The first
mode was the ideal geometric mode which should be very close to the true diffraction mode. The second
mode is a simple plane wave. Fig. 8.7b plots the energy as a function of cycle number for the two modes.
The initial gaussian beam converges almost immediately to a stable, low loss value. The plane wave takes
about 90 cycles to converge to an acceptable degree. The ideal resonator mode is shown in Fig. 8.8.a and
the mode determined by numerical analysis is shown in Fig. 8.8b. The modes are indistinguishable visually. 

If the resonator configuration is significantly modified, the simple gaussian mode may no longer be the
lowest-loss mode. Consider the resonator from the previous example with the addition of an obscuration at
the center of the flat mirror, as shown in Fig. 8.9. If this obscuration is very small, the mode will be largely
unaffected but if the hole is increased sufficiently, a mode which has low intensity in the center may prevail
in the mode competition. The parameters of the resonator are listed in Table 8.3. 

The aperture size has been reduced to make convergence faster. In the numerical experiment, the
obscuration is increased in steps of 0.005 cm for ten steps and the resonator is allowed to settle for 25 round
trips. Where there is a clearly defined mode, the laser stabilizes easily in the 25 passes but where two modes
have nearly the same round-trip loss, 25 passes are insufficient for settling.

Fig. 8.7.a. Simple resonator consisting of a flat mirror 
and a concave mirror. The waist will form at the flat 
mirror.

Fig. 8.7b. Plot of energy loss per pass as a function of 
the pass number. The plot is from Pass 10 to Pass 91. 
The lower horizontal line is actually the loss for Beam 
1 which has already converged from the geometric 
mode within 10 passes. The oscillating curve shows the 
convergence of Beam 2 from the initial uniform 
intensity to the converged solution (top line).

flat-top beam start

gaussian beam start
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Fig. 8.8.a. Ideal resonator mode. Fig. 8.8b. Converged numerical mode. The ideal and 
calculated modes are virtually identical.

Fig. 8.9. Concave and flat mirror resonator with variable size hole in the flat which forms an obscuration in the 
beam.

variable
obscuration

Table. 8.3. Stable resonator example with variable aperture.

length 45 cm

mirror radius 50 cm

wavelength 1.064 µ

Rayleigh range 15 cm

waist radius 0.02253936 cm

aperture radius at concave mirror 0.12 cm

obscuration radius at flat mirror (variable)
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The round-trip energy loss is plotted against the number of passes in Fig. 8.10. At the first set of 25
passes, the obscuration is so small that only the center point is obscured. After the second significant
increase in obscuration—at 50 passes—there is significant disruption of the settling, indicating modes
keeping. Examination of the isometric plots on the following pages can be compared with the regions of this
plot to see the mode changes.

The resonator stayed in the lowest order gaussian mode until about the 100th pass—after the
obscuration had been increased three times. We see the formation of a different mode after 150 passes. At
higher obscuration values, we start to get significant azimuthal variation. The finite accuracy of the
numerical calculations plays an increasing role as the obscuration increases because so many modes have
similar eigenvalues. It is interesting to note that the azimuthal direction tends to break up in to lumps of
about the size of the Airy pattern.

The transverse modes of ideal stable resonators take the form of Hermite gaussian polynomials or
Laguerre gaussian. The general polynomial form of the Hermite-gaussian functions is

(8.29)

Fig. 8.10. Energy loss as a function of number of passes. Note the first region of poor convergence after 75passes.
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where  is the order of the polynomial,  is a waist radius parameter similar to the gaussian beam and
 are the Hermite functions. The two-dimensional functions may be described by multiplying two one-

dimensional functions. The order and waist parameter may be different for the two directions. As an
example, Hermite-gaussian mode (2,1) is illustrated in Figs. 8.11.a and 8.11b.

For Hermite-gaussian mode HGn,m, the Gouy [2][3] shift takes the form[4][5]

, (8.30)

which the case of an elliptical gaussian the Gouy shift is

, (8.31)

where  and  are the respective Rayleigh distances for x and y.
In terms of the stability criterion and expressing the Gouy shift in degrees:

, (8.32)

. (8.33)

The Laguerre-gaussian functions, defined at the waist, are described in cylindrical coordinates,

, (8.34)

n ω0
Hn x( )

Fig. 8.11.a. Hermite gaussian mode 2,1. Fig. 8.11b. Hermite gaussian mode 2,1.
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where  is the azimuthal variation,  is the radial order,  is the azimuthal order,  takes the value 1 if
 and zero otherwise, and  is the Laguerre polynomial. As an example, Laguerre-gaussian mode

(2,1) is illustrated in Fig. 8.12.a and 8.12b.

8.1.3 Aligned Unstable Resonator
The condition for a laser to be unstable is

. (8.35)

Unstable resonators are divided into two general classes. If , the resonator is a positive branch
unstable resonator and must have an even number of internal foci—most frequently zero internal foci. If

, the resonator is a negative branch unstable resonator and has an odd number of internal foci.
Internal foci present obvious problems for high power lasers.

We may find eigenvalues for the unstable resonator, as given in Eq. (8.36).

 or , (8.36)

where  is the round-trip magnification.
In general, we must find the eigenfunctions by numerical analysis. We can, however, find a pair of radii

which are geometrical solutions to the eigenequation,

, . (8.37)

In most cases we choose the solution with magnification greater than 1, called the “magnifying”
solution rather than the “demagnifying” solution. The demagnifying solution will collapse into the optical

θ p m δ0m
m 0= Lp

m

Fig. 8.12.a. Laguerre-gaussian mode 2,1. Fig. 8.12b. Laguerre-gaussian mode 2,1.
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axis and ultimately, because of diffraction, will come back out as a magnifying solution, so it is usually
sufficient to analyze the magnifying wave. Fig. 8.13 illustrates the ray paths of a typical unstable resonator.

Consider a confocal unstable resonator with circular mirrors. The configuration is the same as one
described in Siegman and Miller [1]. The collimated and equivalent Fresnel numbers are 

, , (8.38)

where  is the radius of the secondary mirror,  is distance parameter from the round-trip ABCD matrix,
and  is the wavelength, and  is the magnification.
The parameters that are used are,  = 90 cm,  = 0.3 cm, and  = 0.001 cm. This results in  and

. The configuration is shown schematically in Fig. 8.14.

Fig. 8.13. Ray picture of unstable resonator. The ray goes through segments A through E, increasing in 
magnification by about 3 each time. The ray shown is set to originate from the center of curvature of the 
eigenradius. In this example, the inner third of the outgoing wavefront is fed back during each pass. In numerical 
analysis, the units will expand by the magnification in one round trip. After aperturing by the scraper mirror, 
leaving only the inner part of the array, we rescale the array to the original units, discarding the outer parts of the 
distribution, which are, of course, zero after aperturing. 
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After one round trip, the units of the distribution are twice those of the starting distribution. To start the next
round trip the distribution must be rescaled to the original units. According to Siegman and Miller, the loss
per cycle should be 44%. The numerical calculations are in close agreement with the published results. The
resonator takes about 10 passes to converge. A plot of the energy loss per cycle is shown in Fig. 8.15.

The distribution after the scraper mirror is shown in Fig. 8.16.a. The obscured part of the beam is reflected
back into the resonator to form the feedback. The far-field pattern is shown in Fig. 8.16b. The device is
nearly diffraction limited.

8.1.4 Misaligned Unstable Resonator
The next example is the same confocal, unstable resonator with the addition of 0.1 wave of tilt

aberration representing misalignment. The loss per pass increases to 55 percent and the convergence takes
longer. The misaligned resonator takes about 23 passes to converge.

A plot of the energy loss per cycle is shown in Fig. 8.17.a. The converged eigenmode, determined from
numerical analysis in Example 12, is shown in Fig. 8.17b. The distribution after the scraper mirror is shown

Fig. 8.14. Confocal unstable resonator with 
magnification of 2 per round trip.

Fig. 8.15. Plot of energy loss per pass as a function of 
the pass number.

Fig. 8.16.a. Converged transverse mode after scraper 
mirror.

Fig. 8.16b. Far-field distribution of aligned resonator.
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in Fig. 8.17c. The obscured part of the beam is reflected back into the resonator to form the feedback. The
far-field pattern of the misaligned resonator is shown in Fig. 8.17d. Both the near- and far-field distributions
are severely disturbed by the tilt of 0.1 wavelength.

8.2 References
1. A. E. Siegman and H. Y. Miller, “Unstable Optical Resonator Loss Calculations Using Prony
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Fig. 8.17.a. Plot of energy loss per pass as a function of 
the pass number for misaligned resonator.

Fig. 8.17b. Converged transverse mode for misaligned 
resonator.

Fig. 8.17c. Converged transverse mode after scraper 
mirror for misaligned resonator.

Fig. 8.17d. Far-field pattern of output of misaligned 
unstable resonator.
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9. Gain and Nonlinear Media  

Propagation through active media involves both diffraction and gain or absorption. The numerical
approach to solution is the split-step method described in previous chapters. All of the gain commands use
the gain sheet approach and contain both gain and diffraction steps. In this chapter, the gain part of the
inhomogeneous wave equation is described.

In general, gain is described as a function of the density of the active medium and the intensity of the
optical field. Medium density influences the small signal gain and, in general, has some spatial variation.
Because of saturation of the medium, the gain is a nonlinear function of the intensity of the optical field. A
simple model of gain using Beer's Law (with a saturation intensity) may be used. The saturated form of
Beer's Law may be represented by

, (9.1)

where g0 is the small signal gain, Isat is the saturation intensity, and q = 1/2 for inhomogeneously and q = 1
for homogeneously broadened gain. 

The gain grows exponentially at low values,

. (9.2)

The characteristic gain length is 1/g0. When I(z) is comparable to Isat, the homogeneously broadened gain
takes the form

, (9.3)

which is a linear increase in intensity. Figure 9.1 shows a typical case of homogeneously broadened gain.
In the initial stages of amplification, the gain is exponential and in the later stages it is linearly increasing.
In the saturated regime, the transverse mode may be modified slightly by the saturation of the mode so that
the performance is not identical to the bare-cavity performance. Consider Figs. 3.4.a and 3.4b which show
diffraction patterns with and without saturation. 

9.1 Beer's Law Gain  
A simple model of homogeneously broadened gain using Beer's Law (with a saturation intensity) may

be called with the beer command. The saturated form of Beer's Law may be represented by Eq. (9.1). The
gain may be defined within a region that has a transverse function based on a supergaussian distribution.
The transverse small signal gain is given a supergaussian spatial distribution of the form

I z Δz+( ) I z( )
g0Δz
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, (9.4)

where Rx and Ry are the supergaussian radii and Nx and Ny are the supergaussian exponents for the x- and
y-directions. If Rx and Ry are much larger than the region occupied by the beam, the gain is essentially
unvarying.

Gain, with transverse variation, takes the form

. (9.5)

9.2 Frantz-Nodvik, CO2 Gain  
Frantz-Nodvik kinetics for CO2 pulsed lasers are called by the gainco2 command[1].

, (9.6)

where ln() is the natural logarithm. Frantz-Nodvik gain and Beer’s Law gain are compared in Fig. 9.2.

9.3 Rate Equation Model  
A more detailed gain model based on the two-level atom and the rate equation approximation has been

included. The state of some active medium may be characterized by the density of the medium and the
population inversion. The complex amplitude arrays in GLAD may be used to store the populations density
of the upper and lower level in the real and imaginary parts of the array. The array will constitute a gain

Fig. 9.1. Plot of energy growth as a function of distance. Initially the energy grows exponentially. In the saturated 
regime the energy grows linearly.
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sheet which represents an incremental axial segment of the gain medium. The gain sheet represents a
volume of space of transverse dimensions MDx × NDy × Dz, where M is the number of x-elements in the
array, N is the number of y-elements in the array, and Dz is the axial length of the array. Energy is pumped
into the gain sheet by whatever pump method is used and energy decays from the gain sheet due to
stimulated and spontaneous emission.

A four-level treatment of gain is one of the most commonly used models, as illustrated in Fig. 9.3. The
rate equations are [3]

, (9.7)

, (9.8)

where
 change in population of lower level, atoms/ ,

change in population of upper level, atoms/ ,
pump rate for upper level, excitations/sec/ ,
Pump saturation may be accomodated by including a saturation cross section s. Given a maximum
pumping rate of R2max without saturation. The saturated pump into N2 is

pump rate for lower level, excitations/sec/ ,
spontaneous decay lifetime, sec,
decay time from upper level to ground, sec,
total decay time from upper level to ground, sec, ,

Fig. 9.2. Comparison of Beer's Law and pulsed CO2 gain using Frantz-Nodvik theory (from Example 63).
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decay time from lower level to ground, sec,
transition probability density, probability/sec/cm3,
elapsed time.

The transition probability density is,

, (9.9)

where
wavelength,
normalized lineshape,
index of refraction,
Planck's constant,
frequency of the radiation,
irradiance of the radiation.

The transition probability of Eq. (9.9) may be written in terms of the Einstein B-coefficient:

, where . (9.10)

(9.11)

Fig. 9.3. Energy transitions for a four-level atom, R1 and R2 are the pump rates for Levels 1 and 2. tspont is the lifetime 
for transition between Levels 1 and 2. t10 is the lifetime for decay from Level 1 to the ground state. t20 is the transition 
lifetime from Level 2 to the ground state.
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The small signal amplification takes the form

. (9.12)

Solution of Eqs. (9.7) and (9.8) in steady-state leads [3] to the solution given in Eq. (9.15):

(9.13)

and the gain coefficient is

. (9.14)

The term  is the small-signal population inversion:

. (9.15)

The small signal gain coefficient is

. (9.16)

The equation for steady-state population inversion of Eq. (9.13) by be written as:

(9.17)

where f is

(9.18)

The specific levels N1 and N2 may be found from Eqs (9.7), (9.8), and (9.17) under the condition
DN1/Dt = 0, and DN2/Dt = 0:

, (9.19)

, (9.20)

The steady-state value of N2 may be explicitly solved from Eq. (9.19)

, (9.21)
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and the steady-state value of N1 may then be determined explicitly

. (9.22)

Equations (9.17), (9.21), and (9.22) suffice to determine the steady-state solution for a given irradiance
level.

The commonly used steady-state saturation intensity may be determined by continuing from Eq. (9.17).
In the approximation on the right hand side of Eq. (9.18), we have taken advantage of the fact that for well
behaved lasers [3]  and . The saturation expression from Eq. (9.17) is

(9.23)

The saturation intensity Is for a single frequency component is

(9.24)

where we have used the approximation of Eq. (9.18). Considering Eqs. (9.14) to (9.17), the steady-state
population and gain take the form,

(9.25)

In the case of strong saturation, the gain of Eq. (9.25) is well approximated by

. (9.26)

where the pumping rate into the upper level R2 dominates the process, Eqs. (9.15) and (9.26) give the
saturated gain coefficient as

, , (9.27)

showing, in the case of saturated steady-state gain, a linear growth of irradiance with distance based on the
pumping flux density.

In the case of double pass or multiple pass operation the areas of beam overlap would see the population
and gain decrease according to the sum of the intensities in the overlapped regions:

(9.28)

N1 R1
N2

tspont
----------- ΔN Wi ν( )

i
++ t10 R1

N2
tspont
----------- ΔN B νi( )

Ii
hνi
-------

i
++ t10= =

t10 t2« t2 tspont≈

φtspont Wi ν( )
i
 φ λ2

8πn2h
---------------

f νi( )Ii
νi

---------------
i


I
Is
---= =

Is φ
8πn2hνi

λ2f νi( )
--------------------

tspont
t2

-----------
8πn2hνi

λ2f νi( )
--------------------

hνi
B νi( )t2
-----------------=≈=

ΔN ΔN0

1 I
Is
---+

-------------,= g ν( )
g0 ν( )

1 I
Is
---+

-------------=

dI
dz----- g0 ν( )Is≈ B ν( )ΔN0[ ] hν

B ν( )t2
---------------- ΔN0hν

t2
-----------------= =

dI
dz----- R2hν= g ν( ) R2hν=

ΔN ΔN0

1
I

Is
--------+

------------------,= g ν( )
g0 ν( )

1
I

Is
--------+

------------------=
Jump to: ,  Commands  Examples



123
For double pass operation, we can use the approximation that the average intensity in the standing wave is
twice that of the intensity of a single pass. We can then use the intensity in the single pass but modify the
saturation intensity to be .

In the case of homogeneous broadening and double pass operation a standing wave forms in the cavity.
The gain is therefore:

(9.29)

The standing wave has nodes at a distance of l/2. For a standing wave of many cycles over the gain length
(Dz » l), Eq. (9.29) may be averaged over each cycle. Provided the saturation is not very strong (I « Isat), the
saturation term averages to a value that is twice the single pass case:

(9.30)

In the case of strong saturation, a more exact calculation of the average gain is appropriate. We take
advantage of the integral solution:

(9.31)

For the Beer’s Law saturation in double pass, we make the following substitutions:

. (9.32)

The exact expression integrated over one cycle of cos2 is

(9.33)

In Eq. (9.33), we can integrate from 0 to l/4 for a phase change of 0° to 90°—a single quadrant—which has
the advantage that the argument of the tangent does not change sign. Integrating over a single quadrant, we
have the simplification that:

(9.34)
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which yields the solution for average population inversion as

(9.35)

The exact values from Eq. (9.35) agree with the approximate values of Eq. (9.30) if I « Isat.
As an example consider I = Isat and using Eq. (9.30) and Eq. (9.35) we have the approximate (assuming

the average of cos2 is 1/2, Eq. (9.30)) and exact values for gain saturation in double pass:

(9.36)

The solution of Eq. (9.7) and (9.8) may be broken into separate parts. Equations (9.37) and (9.38)
represent the change in level states independently of the optical field. 

, (9.37)

. (9.38)

Equation (9.37) may be solved independently of Eq. (9.38) :

. (9.39)

Equation (9.38) now takes the form

. (9.40)

This equation has the basic form

, (9.41)

with solution:

, (9.42)
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, (9.43)

. (9.44)

Usually t10«t2 for practical laser systems as N1 must be rapidly depleted relative to the filling from N2 due
to spontaneous emission. However, it is possible for t10= t2 in which case it is necessary to consider the limit,

. (9.45)

So for t10® t2, the limit of Eq. (9.45) may be employed and Eq. (9.44) the solution for N1 takes the form:

. (9.46)

For the more most common case t10« t2,

. (9.47)

Making the further reasonable assumption that the time for pumping t satisfies the condition t» t10, Eq.
(9.47) may be simplified to:

. (9.48)

Equations (9.39) and (9.48) constitute a pair of reasonable relationships to include pumping effects for N2
and N1 exclusive of stimulated emission. Note that, as would be expected, Eqs. (9.39) and (9.48) in steady
state agree with the steady state solutions of Eqs. (9.21) and (9.22) evaluated with zero optical field.
Stimulated emission can then be implemented separately from pumping as explained below.

Equations (9.49) and (9.50) represent the changes due to stimulated emission based on the optical field
and may be effectively solved by the Frantz-Nodvik method described in Section 9.3.1.
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, (9.49)

. (9.50)

9.3.1 Frantz-Nodvik Solution  
In GLAD we treat the laser as consisting of a discrete amplifier and efficiency loss due to outcoupling

and other factors. The Frantz-Nodvik theory provides a means of solving the equations in fast and robust
fashion[1]. The equation of optical amplification in the YAG rod is,

(9.51)

The population inversion at each point is driven by the transition probability,

(9.52)

In a coordinate system moving with the optical field, we make the change of variables t = zn/c

(9.53)

where I(z) is the irradiance, N(z) is the population inversion, and n is the index of the medium. The constant
B is the cross section and has the value,

(9.54)

where λ is the wavelength in the medium (not the vacuum wavelength) and f(n) is area-normalized spectral
line shape function,

(9.55)

Note that f(n) has peak value 2/pDn because of the area normalization.
In the general case of a square pulse traveling through an amplifying medium, we have

the Frantz-Nodvik solution,

(9.56)

where Is = hn/B, as illustrated in Fig. 9.4a. This gives DN(z) as a continuously varying function. In
numerical calculation, we must treat DN(z) as a set of discrete gain sheets and we can not differentiate the
number density axially within a gain sheet, as shown in Fig. 9.4b. Within a gain sheet we must assume, that
all of the population inversion along an axial line intersects with all of the light for a pulse of Δt. For a laser
where the population inversion in the gain sheets is much more uniform because optical beams are entering
from both sides, as illustrated in Fig. 9.4c.
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Equations (9.51) and (9.52) may be solved by the standard numerical methods for solving coupled
differential equations. Unfortunately this approach is too slow since it may be necessary to solve the rate
equations millions of times in the course of an analysis. An approximate solution is to take advantage of
photon conservation to simplify Eqs. (9.51) and (9.52). We then have the approximate solution,

(9.57)

(9.58)

Equations (9.57) and (9.58) may be executed very quickly—requiring only the evaluation of a single
exponential. These equations work very well for many rate equation calculations such as laser startup and
steady-state amplification. However, the gain in a Q-switch device is much higher than can generally be
achieved during laser startup. Under conditions of extremely high gain Eq. (9.57) over-predicts the
amplification because the initial value of ΔN is used in Eq. (9.57). Since the amplification is somewhat too
high, the depletion of the population inversion is somewhat too rapid. With very great amplification, the
error may cause Eq. (9.58) to predict a negative population inversion, which can not arise from stimulated
emission. This is a fairly intractable problem for extreme gain and efforts to provide numerical "patches"
have been less than satisfactory. Through the standard method of numerical solution of coupled differential
equations we have a robust method that is slow. The method of Eqs. (9.57) and (9.58) is fast but not robust.

A method that is both fast and robust is possible by reevaluating the problem. Eqs (9.51) and (9.53) are
appropriate for a small temporal sample of a beam traveling through an optical amplifier. In a resonator, the
gain medium interacts with the entire optical field in the device. We use a single computer array (or at most

Fig. 9.4. (a). Continuous solution for an optical beam passing through an amplifier. (b) shows a gain sheet solution 
where all of the population inversion in each gain sheet is assumed to interact as a unit. (c) shows more uniform 
population inversion in the gain sheet when the amplifier is used in double pass in the typical laser.

(a)

(b)

(c)

I(0)backeard
I(0)forward

I z( ) I 0( )eBΔN 0( )Δz=

ΔN z( ) ΔN 0( ) 2n
hνc--------- I z( ) I 0( )–[ ]–=
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two, for the two polarizations) to represent the entire optical field in the resonator. We can not, therefore,
distinguish temporal events which occur on a scale less than the round-trip time of the resonator. We could,
in principle, use multiple temporal samples to resolve time events shorter than the round-trip time, but this
is not necessary for the Q-switch study.

If we consider the optical field to be of intensity I and of duration, Δt, the round-trip time: then the
optical field contains a well-defined photon flux. The potential photon flux increase due to the population
inversion is

(9.59)

where L is the length of the gain region, as illustrated in Fig. 9.5. The net energy of an incident square pulse
of irradiance I(z) and temporal length Δt, giving the energy density as I(0)Dt. The energy density in a gain
sheet representing a length of L is DN(0)hnL/2. The sum of these two energy densities is a constant by
conservation of energy. 

total energy density = (9.60)

By dividing by Δt, we can calculate the maximum possible irradiance if all the population inversion
were transformed into light,

(9.61)

and by dividing by hnL/(2Dt), we have the maximum population inversion if all the light were subsumed by
stimulated absorption,

Fig. 9.5. A time slice of the pulse of length Dt interacts with a gain region of length L.
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(9.62)

We can use DNmax to calculate N(z),

(9.63)

Equation (9.51) now takes the form,

(9.64)

Equation (9.64) has the exact solution,

(9.65)

At low saturation, Eq. (9.65) approaches the expected simple exponential gain. At high saturation, Eq.
(9.65) approaches Imax. Eq. (9.65) works well for both high and low energy amplifiers and the rate equation
algorithms use this expression.

9.3.2 Off-line Effects  
The gain and off-line index of refraction effects may be represented by a complex index of refraction

using c'm and c''m such that

, (9.66)

, , (9.67)

, (9.68)

where nm – ncen = noff + mDnc, and m is the mode number. The optical field, under steady state conditions
varies as

, (9.69)

where cm = c'm – jc''m is the electric susceptibility and n is the index of refraction.

9.3.3 Spontaneous Emission  
Spontaneous emission arises from the decay of the upper level into the lower level. This radiation is

emitted into 4p steradians and has a bandwidth Dn = 1/ptspont. Our principle concern is the forward scattered
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radiation. In fact, only the radiation which primarily forward directed has enough gain-length to contribute
to the amplified output of the Q-switched laser. This radiation builds up in the forward direction according
to the equation,

(9.70)

where we have assumed that the upper population level is essentially identical to the population inversion,
i.e., initially there is no population in the lower level. The spontaneous emission gain constant for a laser
amplifier takes the form,

(9.71)

The spontaneous emission is accumulated at a linear rate with distance. See Fig. 9.6. In the regime of linear

amplification, the amplified spontaneous emission has the value,

(9.72)

Fig. 9.6. Spontaneous noise is amplified as it propagates through the device as considered in "unfolded" form, as 
shown in the upper figure. If we were to look into the device, we would see the spontaneous emission as bright, self-
luminous “fog”, with the most distant emission being the brightest. This is illustrated by the lowest figure, which 
shows the relative brightness or significance of the emission. Although spontaneous emission is continuously 
generated as long as there is significant population inversion, the noise which is present in the cavity at the time the 
Q-switch is made transmitting dominates the process.
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where g1 = BDN(0) is the small signal gain and g2 is a spectral gain narrowing term which takes into account
the fact that both the stimulated gain and spontaneous gain have the same line width and that the exponential
amplification causes the center frequencies to be strongly preferentially amplified. 

Equation (9.72) suggests an initialization of 

(9.73)

where

(9.74)

The noise source defined in Eqs. (9.73) and (9.74) may be interpreted as consisting of a photon emitted
per square wavelength per spontaneous emission time. 

The gain narrowing factor may be estimated by assuming the maximum value of I(z) to be Imax, so we
have

(9.75)

The natural logarithm and subsequent square root make the line narrowing factor remarkably insensitive
to the exact laser starting conditions. A typical value of line narrowing will reduce the spectral linewidth by
a factor of about 7. The value of the starting noise power itself effects the outcome only very little. It merely
delays the pulse slightly.

The solid angle ΔW which contributes to the output of the device is approximately

(9.76)

where t is the time from the Q-switch activation. In the numerical analysis, we can simply fill the solid angle
associated with the computer array, giving a value of DW such that

(9.77)

where Δx and Δy are the sample spacings in the two directions. When the full solid angle of the array is
seeded, most of the wide angle light is scattered out of the beam path and eliminated by the apertures, so
that ultimately the noise which remains fills the solid angle defined by Eq. (9.77).

In simplest form spontaneous emission may be injected for a distance Dz as

, (9.78)

where the solid angle subtended by the computer array is DW = l2/4pDxDy when using sampling intervals
of Dx and Dy. This noise is introduced as a delta-correlated, normally distributed random phasor.
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9.3.4 Numerical Example of Four Level Rate Equation Gain
See Example69f for a detailed calculation of four level rate equation gain.

9.4 Semiconductor gain
An approximate model of semiconductor gain, may be obtained from Coldren and Corzine[4]. The basic

equation of population inversion response to generation and recombination is given in Eq. (9.79)

(9.79)

Ggen is the generation rate and Rrec is the recombination rate–both per unit volume. Generation is created
from the current I as shown in Eq. (9.80):

(9.80)

where hi is the efficiency, I is the current, q is the charge, and V is the volume. Recombination is due to both
the non-coherent decay N/t and stimulated recombination (lasing) Rst, Eq. (9.81);

(9.81)

Noncoherent decay is written by Coldren and Corzine as a polynomial in the electron-hole pair density N,
Eq. (9.82), according to the approximate the nonlinear response:

(9.82)

A nonradiative recombination
B bimolecular recombination coefficient, B ® 10–10cm3/s.
C Auger recombination (Eq. 4.86, p159, Coldren and Corzine)

The stimulated emission is identified by the term Rst that includes the gain coefficient g(N), the group
velocity vg, and the photon density Np as shown in Eq. (9.83):

(9.83)

where it is noted explicitly that gain varies according to N. Including the generation term and the
spontaneous and stimulated regeneration terms, we have the rate of change of the inversion density is

. (9.84)

Photon rate equation from Eq. 2.12 from Coldren and Corzine[4] is given in Eq. (9.85),

(9.85)

G confinement factor V/Vp, volume of charges divided by volume of photons,
spontaneous recombination rate (excitations/cm3/sec),

∂N
∂t------- Ggen Rrec–=

Ggen
ηiI
qV-------=

Rrec
N
τ---- Rst+=

1
τ--- A BN CN2+ +=

Rst vgg N( )Np=

∂N
∂t-------

ηiI
qV------- N

τ----– Rst–=

∂Np
∂t--------- Γvgg N( )Np ΓβspRsp

Np
τc
------–+=

Rsp
Jump to: ,  Commands  Examples



133
spontaneous emission factor,
photon decay rate due to cavity loses.

The spontaneous emission factor bsp is defined by Coldren and Corzine, p35, to be the reciprocal of the
number of optical modes in the bandwidth of the spontaneous emission. This is essentially the ratio of the
free spectral range to the bandwidth of the spontaneous emission.

For a numerical solution working on a point-by-point basis, G may be set to unity and any mismatch of
charge volume to photon volume treated explicitly by apertures and obscurations.

(9.86)

Coldren and Corzine give an approximate expression for spontaneous emission rate in Eq. (9.87), 

(9.87)

Gain varies nonlinearly with respect to N. From Eq. 2.40 Coldren and Corzine[4], 

, (9.88)

where Ns is a small term to force the natural logarithm to be finite at N = 0 (See Coldren and Corzine) and 
Ntr is transparency carrier density.

In the case of g æ 0, the term Ns may be neglected and the small signal gain g0 defined

. (9.89)

We can also define a cross section,

. (9.90)

For a modest range of N about some operational point N0, the nonlinear gain [Eq. (9.89)] may be assumed
to be linear and the cross section from Eq. (9.90) is effectively constant.

Beginning from the photon density rate equation Eq. (9.86) and neglecting the cavity loss and
spontaneous emission, the photon rate of the moving optical field is:

. (9.91)

Eq. (9.91) gives the increase in photon density for an optical field moving at speed vg through the medium.
The variation of the photon density in the optical field with respect to z is

, (9.92)

where we have taken into account the definition of group velocity ng = ûz/ût and noted the chain rule û/ût
= (ûz/ût)(û/ûz). Since the irradiance field I(z) varies proportionally with Np(z) according to I(z) = vghnNp(z),
Eq. (9.92) gives the intensity gain:

βsp
τc

∂Np
∂t--------- vgg N( )Np βspRsp

Np
τc
------–+=

Rsp BN2≈

g N( ) g′
N Ns+

Ntr Ns+------------------- 
 ln=

g N( ) g0
N

Ntr
------- 
 ln=

σ N( ) g N( )
N------------

N Ntr≥
=

∂Np z t,( )
∂t--------------------- vgg N( )Np z t,( )=

∂Np z t,( )
∂z--------------------- g N( )Np z t,( )=
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. (9.93)

The change in intensity due to spontaneous emission is a function of Rst, the spectral efficiency factor bsp,
and the solid angle DW included in the numerical model as defined in Eq. (9.77):

, (9.94)

The net intensity gain including spontaneous emission in an numerical model is based on Eq. (9.93) and Eq.
(9.94):

, (9.95)

Taking advantage of the approximation of Eq. (9.87), we have the expression for intensity gain with
spontaneous emission contribution:

. (9.96)

Considering only the stimulated emission terms for both charge density and the amplification of the
optical field and taking the linear part of the gain, we have the expressions for inversion change versus time
and intensity versus growth,

(9.97a)

. (9.97b)

For the Frantz-Nodvik solution developed in Sect. 9.3.1, a solution is found for a square temporal pulse
of length Dt interacting with a gain region of length L. We use intermediate terms for maximum possible
intensity Imax and maximum possible charge density Nmax

 and . (9.98)

We can use Nmax to calculate N(z),

. (9.99)

Equation (9.97b) now takes the form,

. (9.100)

(9.101)

Equation (9.100) has the exact solution,

∂I z( )
∂z------------ g N( )I z( )=

ΔInoise
Δz--------------- βspΔΩhνRsp=

∂I
∂z----- g N( )I βspΔΩhνRsp+=

∂I
∂z----- g N( )I βspΔΩhνBN2+=

∂N
∂t------- σN I

hν
------–=

∂I
∂z----- σNI=

Imax I 0( ) N 0( )hνL
Δt----------------------+= Nmax N 0( ) I 0( )Δt

hνL----------------+=

N z( ) Nmax
I z( )Δt
hνL---------------–=

z∂
∂ I z( ) σN z( )I z( ) σ Nmax

I z( )Δt
hνL---------------– I z( )=

z∂
∂ I z( ) σhνL

Δt-------------- Imax I z( )–[ ]I z( )=
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, (9.102)

and we may calculate N(L) from Eq. (9.99). If the resulting N(L) is significantly different than N(0) such
that the first derivative approximation used to get s is in question, then the step length L should be reduced
to lower the range of N to stay within a relatively linear regime for g(L).

9.4.1 Numerical Example: semiconductor gain
For a numerical example of semiconductor gain, see .inp.

9.5 Three-Level Gain, Ruby Laser  
The ruby laser, invented by Maiman, was the first working laser[5]. A study by Kuo, et. al., describes

numerical methods of the Q-switched ruby laser[6]. The gain of the ruby laser depends only on the
populations of two states[9]. The upper state is split into two levels, 2A and E. The higher 2A state to ground
emits at 692.2nm and the E state to ground emits at 694.3nm. The E to ground transition has the higher gain
because its population is 15% higher in thermal equilibrium at 300°K. They are connected so closely by
thermal equilibration that the energy in E is effectively the total energy in the two split states. The gain
depends on the population in the upper state E, the lower state N1, and each state's degeneracy gd(). The
degeneracies are: gd(N1) = 4, gd(2A) = 2, and gd(E) = 2.

The net population of the split upper level is,

. (9.103)

The total population of the upper and lower states is constant on a pointwise basis:

 = constant for each x, y point, (9.104)

Ntot depends only on the doping density in the crystal. The ratio of the population densities between the split
levels depends on the Boltsmann distribution K,

. (9.105)

where k is the Boltzmann constant, 1.3806503×10–23j·K–1 =. The gain is

, (9.106)

where s21(n) is the cross section between levels E and N1. 
For ruby we have the relationship between s21(n) and s12(n),

. (9.107)

s21(n) is 

I L( )
ImaxI 0( )

I 0( ) Imax I 0( )–[ ]e
σNmaxL–

+
--------------------------------------------------------------------=

 Ex69d

N2 N2 2A( ) N2 E( )+=

Ntot N1 N2+ N1 N2 2A( ) N2 E( )+ += =

K
N2 2A( )
N2 E( )

------------------ ΔE
kT-------– 

 exp 0.87 @ 300°K≈= =

g ν( ) σ21 ν( ) N2 E( )
gd E( )
gd N1( )
-----------------N1–=

σ21 ν( )
gd N1( )
gd E( )
-----------------σ12 ν( ) 2σ12 ν( )= =
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, (9.108)

. (9.109)

Typical values are t21 = 0.00511 – 1.057×10–5(T – 293ºK) seconds and Dn(300ºK) = 2×1011Hz. From Eqs.
(9.103) through (9.106) we have

. (9.110)

The rate equations for interaction of population inversion and optical field f, as photon density, are 

, (9.111)

, (9.112)

, (9.113)

where tc represents the cavity loss and fnoise represents the contribution from spontaneous emission. The
pumping rate R is the product of the pump irradiance and the pumping cross section. The cavity loss may
be incorporated separately by representing the aperture clipping and other losses, so it need not be solved
explicitly in the pair of differential equations. The spontaneous emission and pumping rate may be separated
out leaving the optical field and population inversion interaction

, (9.114)

where

, , (9.115)

. (9.116)

We may make the substitutions  and  into Eq. (9.114) and Eq. (9.116),

. (9.117)

σ21 ν( ) λ2

8πn2t21

-------------------f ν( )=

f ν( ) Δν T( )
2π

--------------- 1

ν ν0–( )2 Δν T( )
2--------------- 

  2
+

----------------------------------------------------=

g ν( ) σ21 ν( ) 3 K+
2 1 K+( )
---------------------N2

Ntot
2--------–=

t∂
∂N2 RN1

hν----------
N2
t21
------– g ν( )φ–=

t∂
∂φ φnoise

φ
tc
---–=

z∂
∂φ g ν( )φ=

t∂
∂N2 g ν( )φ– φ α ν( )N2 β ν( )Ntot–[ ]– α ν( ) N2

β ν( )
α ν( )
------------Ntot– φ–= = =

α ν( ) σ21 ν( ) 3 K+
2 1 K+( )
---------------------= β ν( )

σ21 ν( )
2----------------=

z∂
∂φ g ν( )φ φ α ν( )N2 β ν( )Ntot–[ ] α ν( )φ N2

β ν( )
α ν( )
------------Ntot–= = =

N′ z( ) N2 z( ) β ν( )
α ν( )
------------Ntot–= φ I

hν------=

z∂
∂ I z( ) α ν( )N′ z( )I z( )=
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Equation (9.117) may be solved by the Frantz-Nodvik method for the important special case of a square
temporal pulse traveling through an amplifying medium, as illustrated in Fig. 9.5. Once I(z) is calculated,
N '(z) and N2(z) may be immediately calculated from energy conservation.

Consider the optical field to be of intensity I and of duration, Dt. The optical field may also be expressed
as photon flux I/hv. For the three level atom, the potential photon flux increase due to the population
inversion is

, (9.118)

where L is the length of the gain region. The net energy of an incident square pulse of irradiance I(0) and
temporal length Dt, giving the energy density as I(0)Dt. The energy density in a gain sheet representing a
length of L is N '(0)hnL. The sum of these two energy densities is a constant by conservation of energy. 

total energy density = . (9.119)

By dividing by Dt, we can calculate the maximum possible irradiance if all the population inversion were
transformed into light,

, (9.120)

and by dividing by hnL, we have the maximum population inversion if all the light were subsumed by
stimulated absorption,

. (9.121)

We can use N 'max to calculate ,

. (9.122)

Equation (9.117) now takes the form,

. (9.123)

Equation (9.123) has the exact solution,

, (9.124)

, (9.125)

By energy conservation we may immediately get DN2(z), which is identical to DN '(z),

. (9.126)

N′ 0( )L

I 0( )Δt N′ 0( )hνL+

Imax I 0( ) N′hνL
Δt----------------+=

N′max N′ 0( ) I 0( )Δt
hνL----------------+=

N′ z( )

N′ z( ) N′max
I z( )Δt
hνL---------------–=

z∂
∂ I z( ) α ν( )N′ z( )I z( ) α ν( ) N′max

I z( )Δt
hνL---------------– 

  I z( )=

I L( )
ImaxI 0( )

I 0( ) Imax I 0( )–[ ]e
α ν( )Nmax

′ L–
+

--------------------------------------------------------------------------=

ΔI I L( ) I 0( )–=

ΔN2 ΔN2
′ ΔIΔt

hνl------------–= =
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At low saturation, Eq. (9.124) approaches the expected simple exponential gain. At high saturation, Eq.
(9.124) approaches Imax. Eq. (9.124) works well for both high and low energy amplifiers and the rate
equation algorithms in GLAD take advantage of this simplification.

9.5.1 Sample Calculation: Three-level Gain, Ruby Laser  
Assume the following values:

linewidth 

decay time 

T = 293ºK

, 

.  for T = 293ºK.

, , and 

For small signal gain,  and  which implies the small signal gain is

.

The contribution of N'(0) to the maximum intensity is N'(0)hnL/Dt. Given h = 6.626×10-34 and
c = 2.99792458×1010cm/sec, hn = 2.860945×10-19. Given a pulse width of Dt = 0.1nsec and length of
L = 1cm, the contribution of N(0) to the maximum intensity is Imax = N'(0)hnL/Dt = 2.3265×1010 w/cm2.
Imax represents the saturation value. For a starting irradiance of I(0) = 109,

Δν 293°K( ) 3.3 11×10 sec 1–=

t21 293°K( ) 0.00511sec=

λ 293°K( ) 0.694325μ= ν0 293°K( ) 4.3178 14×10=

σ21 ν0( ) λ2

8πn2t21

-------------------g ν0( ) λ2

8πn2t21Δν
-------------------------- 2.31145 20–×10 cm2= = =

Ntot 1.58 19×10 cm 3–=

ΔE
k------- 35.5186≈ K ΔE

kT-------– 
 exp 0.885836= =

α σ21
3 K+

2 1 K+( )
--------------------- 2.38141 20–×10 cm2= = β

α---
1 K+
3 K+-------------= 0.48531≈ N′ N2 0.48531Ntot–=

N1 0≈ N2 Ntot≈

g0 σ21
3 K+

2 1 K+( )
---------------------N2

Ntot
2--------– σ21

3 K+
2 1 K+( )
--------------------- 1

2---– Ntot= = 0.5171826σ21Ntot 0.193659cm 1–≈ ≈

N′ 0( ) 0.48531Ntot 8.13209738 18×10 cm 3–= =
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,

,

.

9.6 Three-Level Gain, Single Upper State  
In the case of a three-level system with a single upper (non-split) state, the lasing is between the upper

state and ground state. The total population of the upper and lower states is constant on a pointwise basis:

 = constant for each  point. (9.127)

The gain is

, (9.128)

where s21(n) is the cross section between levels N2 and N1. s21(n) is 

, (9.129)

. (9.130)

A typical value for an excimer using KrF is t21 = 8.1×10-9sec. The rate equations for interaction of
population inversion and optical field f, as photon density, are

, (9.131)

, (9.132)

, (9.133)

where tc represents the cavity loss and fnoise represents the contribution from spontaneous emission. The
pumping rate R is the product of the pump irradiance and the pumping cross section. The cavity loss may
be incorporated separately by representing the aperture clipping and other losses, so it need not be solved
explicitly in the pair of differential equations. The spontaneous emission and pumping rate may be separated
out leaving the optical field and population inversion interaction

I L 1cm=( )
ImaxI 0( )

I 0( ) Imax I 0( )–( )e
α ν( )Nmax

′ L–
+

--------------------------------------------------------------------------

L 1cm=

1.203600 9×10 w/cm2= =

ΔI I L( ) I 0( )– 2.03600578 8×10 w/cm2= =

ΔN2 ΔN2
′ ΔIΔt

hνL------------ 7.11655 17×10 photons/cm3= = =

Ntot N1 N2+= x y,

g ν( ) σ21 ν( ) N2 N1–[ ] σ21 ν( ) 2N2 Ntot–[ ]= =

σ21 ν( ) λ2

8πn2t21

-------------------f ν( )=

f ν( ) Δν
2π
------- 1

ν ν0–( )2 Δν
2------- 

  2
+

-------------------------------------------=

t∂
∂N2 RN1

hν
----------

N2
t21
------– g ν( )φ–=

t∂
∂φ ϕnoise

φ
tc
---–=

z∂
∂φ g ν( )φ=
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. (9.134)

We may make the substitutions

 and , (9.135)

, (9.136)

. (9.137)

Equation (9.137) may be solved by the Frantz-Nodvik method for the important special case of a square
temporal pulse traveling through an amplifying medium.

Consider the optical field to be of intensity I and of duration Dt, The potential photon flux increase due
to the population inversion is

, (9.138)

where L is the length of the gain region. The net energy of an incident square pulse of irradiance I(z) and
temporal length Dt, giving the energy density as I(0)Dt. The energy density in a gain sheet representing a
length of L is N '(0)hnL. The sum of these two energy densities is a constant by conservation of energy. 

total energy density = . (9.139)

By dividing by Dt, we can calculate the maximum possible irradiance if all the population inversion were
transformed into light,

(9.140)

and by dividing by hnL, we have the maximum population inversion if all the light were subsumed by
stimulated absorption,

. (9.141)

We can use N 'max to calculate N '(z),

. (9.142)

Equation (9.137) now takes the form,

. (9.143)

Equation (9.143) has the exact solution,

t∂
∂N2 g ν( )φ– φ– σ21 ν( ) 2N2 Ntot–[ ]= =

N′ 2N2 Ntot–= φ I hν⁄=

t∂
∂ N′ σ– 21 ν( ) I

hν
------N′=

z∂
∂I σ21 ν( )N′I=

N′ 0( )L

I 0( )Δt N′ 0( )hνL+

Imax I 0( ) N′hνL
Δt----------------+=

N′max N' 0( ) I 0( )Δt
hνL----------------+=

N′ z( ) N′max
I z( )Δt
hνL---------------–=

z∂
∂ I z( ) σ21 ν( )N′ z( )I z( ) σ21 ν( ) N′max

I z( )Δt
hνL---------------– I z( )=
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, (9.144)

, (9.145)

. (9.146)

At low saturation, Eq. (9.144) approaches the expected simple exponential gain. At high saturation,
Eq. (9.144) approaches Imax. Eq. (9.144) works well for both high and low energy amplifiers and the rate
equation algorithms in GLAD take advantage of this simplification.

Medium pumping is found from the rate equations:

, , (9.147)

where R is the photon pumping irradiance rate [sec-1], Ip is the pumping irradiance [w/cm2], and s is the
pumping cross section [cm2].

, (9.148)

, (9.149)

. (9.150)

The steady-state upper state population is, 

, (9.151)

, (9.152)

. (9.153)

We need to have Nss > Ntot/2 to have a population inversion, so it is necessary to have Rt2 > 1. The
critical pumping rate is:

critical pumping rate, Rt2 = 1. (9.154)

We can relate the pumping rate R to a cross section sp for the pumping illumination Ip:

I L( )
ImaxI 0( )

I 0( ) Imax I 0( )–[ ]e
σ21 ν( )N ′maxL–

+
-------------------------------------------------------------------------------=

ΔI I L( ) I 0( )–=

ΔN2 ΔN′2
ΔIΔt
hνl------------–= =

dN2
dt--------- RN1

N2
t2
------–= R σ

Ip
hν------=

dN2
dt--------- R Ntot N2–( )

N2
t2
------–=

dN2
dt--------- RNtot R 1

t2
----+ 

 N2–=

N2 t( )
RNtot

R 1
t2
----+

-------------- N2 0( )
RNtot

R 1
t2
----+

--------------– R 1
t2
----+

 
 
 

– texp+=

Nss
Rt2Ntot
1 Rt2+-----------------=

N2 t( ) Nss N2 0( ) Nss–[ ]
Rt2 1+

t2
-----------------
 
 
 

– texp+=

ΔN2 t( ) Nss N2 0( )–[ ] 1
Rt2 1+

t2
-----------------t– 

 exp–=
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. (9.155)

We can also relate the pumping absorption ap coefficient to the cross section sp and N1:

. (9.156)

Note that absorption is a variable because of its dependence on ground state population N1. If we have
measured ap for some known N1 then sp may be calculated per Eq. (9.156) and the pumping rate R can be
found from Eq. (9.157).

See .inp.

9.6.1 Multiple Mode Interactions  
Given several modes identified by the k-index and having intensities Ik, frequencies nk, and associated

cross sections sk; all modes compete for the same population inversion. A quasi-Frantz-Nodvik approach
may be derived for the case of multiple, competing modes such as longitudinal modes.

Repeating Eq. (9.51), the fundamental equation for optical amplification is

. (9.157)

The inversion N '(z) is decreased by all optical modes

. (9.158)

Define the mode ratio bk to be

, (9.159)

. (9.160)

After reorganizing terms,

. (9.161)

We used the generalized maximum possible intensity and inversion:

 and . (9.162)

R
σpIp
hν

----------=

αp σpN1=

 Ex69g

z∂
∂ I z( ) B ν( )N′ z( )I z( )=

N′ z( ) N′max
Δt

hνL---------- Ik z( )
k 1=

N

–=

βk

Ii z( )
i 1=

N



Ik z( )
--------------------=

z∂
∂ Ik z( ) B νk( )N′ z( )Ik z( ) B νk( ) N′max

βkΔt
hνL-----------Ik z( )– Ik z( )=

z∂
∂ Ik z( )

B νk( )βkhνL
Δt------------------------------ Imax βk⁄ Ik z( )–[ ]Ik z( )=

Imax Ii 0( )
i 1=

N


N′ 0( )hνL

Δt------------------------+= N′max N′ 0( ) Δt
hνL---------- Ii 0( )

i 1=

N

+=
Jump to: ,  Commands  Examples



143
If we assume bk is constant over a short distance L, we have the Frantz-Nodvik solutions to be calculated
for for all k:

. (9.163)

Consider the limits of Eq. (9.163)

(9.164)

(9.165)

. (9.166)

We define I as the total intensity as the sum of intensity in all longitudinal modes,

. (9.167)

The very high case from Eq. (9.166) is then

, (9.168)

such that all power is swept out of the population inversion into the total irradiance.
In another test case, note that if all cross sections B(nk) are equal such that B(nk) = B, Eq. (9.161) takes

the form

. (9.169)

Taking the sum of this equation over all modes

. (9.170)

Ik L( )
Ik 0( )Imax βk⁄

Ik 0( ) Imax βk⁄ Ik 0( )–[ ]e
B νk( )N ′maxL–

+
-------------------------------------------------------------------------------------------=

gain 0→ , Ik L( )
Ik 0( )Imax βk⁄

Ik 0( ) Imax βk⁄ Ik 0( )–[ ]+------------------------------------------------------------- Ik 0( )= =

gain ∞,→ Ik L( )
Ik 0( )Imax βk⁄

Ik 0( )
------------------------------- Imax βk⁄ Ik 0( ) 1 N′ 0( )hνL

Δt------------------------ 1

Ii 0( )
i 1=

N



---------------------+= = =

gain ∞,→ Ii L( )
i 1=

N

 Ii 0( )
i 1=

N

 1 N′ 0( )hνL
Δt------------------------ 1

Ii 0( )
i 1=

N



---------------------+ Ii 0( )
i 1=

N


N′ 0( )hνL

Δt------------------------+= =

I Ii
i 1=

N

=

gain ∞,→ I L( ) I 0( ) N′ 0( )hνL
Δt------------------------+=

z∂
∂ Ik z( ) BhνL

Δt-------------- Imax Ii z( )
i 1=

N

– Ik z( )=

z∂
∂ Ik z( ) BhνL

Δt-------------- Imax Ii z( )
i 1=

N

– Ik z( )=
 
 
 

i 1=

N
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. (9.171)

Using the total irradiance I from Eq. (9.167), we have

(9.172)

so that for the special case of all cross sections B(nk) equal, the total irradiance obeys the same differential
equation as does the single mode. This is the expected result for this degenerate case.

When the gain is saturating, the intensity factor bk must be recalculated at intervals along the
propagation distance, so Eqs. (9.159) and (9.163) form a split-step pair. We need sufficient sampling in the
propagation direction to resolve the change in bk from initial state to its gain-narrowed state. We may expect
bk to be relatively slowly varying, so the sampling in the propagation direction is not very dense—
presumably much less dense than would be required for a direct solution of the differential equation Eq.
(9.157).

9.6.2 Sample Calculation: Three-level Gain, Single Upper Level  
Consider a KrF excimer laser. Example 69e.inp illustrates this case. Assume the following values:

(9.173)

(9.174)

linewidth is 50 picometers, (9.175)

spontaneous decay time (9.176)

index of refraction , , , 

. (9.177)

For , sec. (9.178)

. (9.179)

z∂
∂ Ii z( )

i 1=

N


BhνL

Δt-------------- Imax Ii z( )
i 1=

N

– Ii z( )
i 1=

N

=

z∂
∂I BhνL

Δt-------------- Imax I–[ ]I=

ν0
c
λ--- 1.207132 15×10 sec 1–= =

hν 7.9984571 10–×10 cm 3–=

Δν 50 10–×10 ν
λ---= 2.43 11×10 Hz≈

tspont 8.1 9–×10 sec=

n 1= λ 0.248351μ= ν 1.207132 15×10=

f ν( ) Δν
2π
------- 1

ν ν0–( )2 Δν
2------- 

  2
+

-------------------------------------------=

ν ν0= f ν0( ) 2
πΔν---------- 2.619834 12–×10= =

σ21 ν0( ) λ2

8πn2tspont

------------------------f ν0( ) λ2

8πn2tspont

------------------------ 2
πΔν---------- 7.937445 15–×10 cm2= = =
Jump to: ,  Commands  Examples



145
Select maximum energy density to be Jtot = 2×10-5j·cm-3 yielding a maximum population of

Ntot = Jtot/hn = 2.50048×1013cm-3. (9.180)

For complete inversion we would be able to extract a maximum of 0.001j·cm-2. The maximum possible 
small signal gain is

. (9.181)

The spontaneous decay time is tspont = 8.1×10-9sec. Assuming a non-spontaneous decay rate of t21 

= 8.1×10-8sec, the net decay rate is

. (9.182)

Select the pumping rate to be twice the critical pumping rate from Eq. (9.152),

R = 2 × 1/t2= 2/t2 = 2.4891358×108sec-1. (9.183)

With this pumping rate and the expression for Nss, Eq. (9.151),

 = 1.666988×1013cm-3. (9.184)

The population change by Eq. (9.153) is 

. (9.185)

For a medium initially at rest  and a pumping time of t = 4×10-9sec, 

(9.186)

The population inversion after this short interval of pumping is, therefore,

. (9.187)

g0max
σ21Ntot 0.1984 cm 1–= =

t2
1

1
tspont
----------- 1

t21
------+

------------------------ 8.0349171 9–×10 sec= =

Nss
Rt2Ntot
1 Rt2+-----------------

2Ntot
3------------= =

ΔN2 t( ) Nss N2 0( )–[ ] 1
Rt2 1+

t2
-----------------t– 

 exp–=

N2 0( ) 0=

N2 t( ) 1.666988 13×10 0–( ) 1 3
8.0349171 9–×10
---------------------------------------4 9–×10– 

 exp– 0.7754106Nss

0.7754106( )2
3---Ntot 0.5169404Ntot 0.5169404( ) 2.5 13×10( ) 1.292600 13×10 cm 3–

= = =

= = =

ΔN N2 N1– 2N2 Ntot– 2 0.5169404Ntot( ) Ntot– 0.03388Ntot 8.4718375 11×10= = = = =
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The small signal gain is

.

The small signal amplification for length L = 1 is  = 6.7244751×10-3. The noise power is

(9.188)

where the factor of 1/7 includes the line narrowing typically associated with nonlinear gain. Including the
numeric values we have,

For units of 0.1 cm and a wavelength of l = 0.248351, the solid angle is

(9.189)

(9.190)

The mean spontaneous emission irradiance to be added at each point is

. (9.191)

Time per pass is sec. To achieve approximately 0.01 jules per pulse out of a gain region of 50cm, 

we need an energy density of about , so that

. (9.192)

To pump at least twice the inverse of the net level decay rate, assume 

.

After pumping for  seconds

. (9.193)

The contribution of N '(0) to the maximum intensity is

g0 σ21ΔN= 7.937 15–×10 cm2( ) 0.0338( ) 2.5 13×10 cm 3–( )≈ 6.7244751 3–×10 cm 1–=

g0L

ΔInoise 
N2 N1–( )hνΔz

2tspont
------------------------------------- λ2

4πΔxΔy-------------------- 1
7--- 
 =

λ2

4πΔxΔy-------------------- 0.248351 4–×10( )
2

4π 0.1( )2------------------------------------------- 4.908197 9–×10= =

hνΔz
2tspont
-------------- λ2

4πΔxΔy-------------------- 1
7--- 
  7.998 10–×10

2 8.1 9–×10( )
-----------------------------4.9082 9–×10 1

7--- 
  3.4619 20–×10= =

ΔN hνΔz
2tspont
-------------- λ2

4πΔxΔy-------------------- 1
7--- 
  2.47874965 13×10( ) 3.4619 20–×10( ) 8.58119524 7–×10 w cm⋅ 2–= =

4 9–×10

Jtot 0.001 50⁄( )j cm 1–⋅=

Ntot 0.001 50 hν⁄⁄ 2.50 13×10 cm 3–= =

R 2 tspont⁄ 2.4691358 8×10 cm 1–= =

4 9–×10

N′ 0( ) 0.03388081Ntot= 8.4718375 11×10 cm 3–=
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. (9.194)

Imax represents the saturation value. For a starting irradiance of , 

(9.195)

(9.196)

(9.197)

. (9.198)

9.7 General Three-Level Gain with manifolds for each level  
Both the upper and lower levels may consist of multiple levels in a manifold arrangement. See Bourdet

[7,8]. It is assumed that each of the manifolds is closely connected such that the populations of the manifold
equilabrate very quicly—much more quickly than the cavity round trip time. Fig. 9.7 illutrates manifolds
for upper and lower levels.

Assume the upper level N2 consists of a total of Q levels such that

(9.199)

and N1 consists of P levels such that.

 . (9.200)

The ordering of p and q levels is not necessarily in the order of energy increase. For convenience we assume
lasing occurs between p = 0 and q = 0.

The total population of the upper and lower states is constant on a pointwise basis:

 = constant for each x, y point. (9.201)

The degeneracies of the upper and lower levels are gd(N20) and gd(N10). The ratio of the population
densities between the split levels depends on the Boltsmann distribution K,

N′ 0( )hνL
Δt------------------------ 8.4718375 11×10( ) 5.0010 9×10( ) 1.694040 2×10 w cm2⁄= =

I 0( ) 2.0=

Imax I 0( ) N′ 0( )hνL
Δt------------------------+ 2.0 1.6940 2×10+ 1.71404073 2×10 w cm2⁄= = =

N′max N′ 0( ) I 0( )Δt
hνL----------------+ 8.5718568 11×10= =

I L 1cm=( )
ImaxI 0( )

I 0( ) Imax I 0( )–[ ]e
σ21N ′maxL–

+
-------------------------------------------------------------------------

L 1cm=

2.013494w cm2⁄= =

ΔI I L( ) I 0( )– 0.01349366w cm2⁄= =

N2 N2q
q 0=

Q

=

N1 N1p
p 0=

P

=

Ntot N1 N2+ N1p
p 0=

P

 N2q
q 0=

Q

+= =
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 and . (9.202)

where k is the Boltzmann constant, 1.3806503×10–23j·K–1. The lower and upper populations may be
expressed in therms of these Boltzman ratios and N10 and N20.

 and (9.203)

The gain is

, (9.204)

where s21(n) is the cross section between levels and N20 and N10. 
We have the relationship between s21(n) and s12(n),

. (9.205)

s21(n) is 

, (9.206)

Fig. 9.7. Both the upper level N2 and the lower level N1 may consist of multiple levels that repopulate the particular 
laser levels that form manifolds. N2b and N1c are the particular pair of lasing levels in this figure. The levels of each 
manifold redistribute populations to try to preserve thermal equilibrium. Because of rapid redistribution, the 
population of the non-lasing levels of each manifold contribute to the lasing process.

ground

N
1a
N

1b

N
1c

N
2a
N

2b

N
2c

upper manifold

lower manifold

lasing line

K2 q( )
N2q
N20
--------

E2q E20–
kT-----------------------– 

 exp= = K1 p( )
N1p
N10
--------

E1p E10–
kT-----------------------– 

 exp= =

N1 N10 K1 p( )
p 0=

P

= N2 N20 K2 q( )
q 0=

Q

=

g ν( ) σ21 ν( ) N20
gd N20( )
gd N10( )
-------------------N10–=

σ21 ν( )
gd N20( )
gd N10( )
-------------------σ12 ν( )=

σ21 ν( ) λ2

8πn2t21

-------------------f ν( )=
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. (9.207)

Equation (9.204) may be combined with Eq. (9.203) to express the gain in terms of N2 and Ntot:

. (9.208)

The rate equations for interaction of population inversion and optical field f, as photon density, are 

, (9.209)

where R is the photon pumping rate. Eq. (9.209) is the same as Eq. (9.147) and has solution Eq. (9.151) for
the steady-state solution Nss with no optical field and the effect of pumping in terms of N2 and Nss (also with
no optical field).

, (9.210)

, (9.211)

where tc represents the cavity loss and fnoise represents the contribution from spontaneous emission. The
cavity loss may be incorporated separately by representing the aperture clipping and other losses, so it need
not be solved explicitly in the pair of differential equations. The spontaneous emission and pumping rate
may be separated out leaving the optical field and population inversion interaction

, (9.212)

where

, (9.213)

f ν( ) Δν T( )
2π

--------------- 1

ν ν0–( )2 Δν T( )
2--------------- 

  2
+

----------------------------------------------------=

g ν( ) σ21 ν( ) 1

K2 q( )
q 0=

Q



------------------------
gd N20( )
gd N10( )
------------------- 1

K1 p( )
p 0=

P



------------------------+ N2
gd N20( )
gd N10( )
-------------------

Ntot

K1 p( )
p 0=

p



------------------------–

 
 
 
 
 
 
 

=

dN2
dt--------- RN1

N2
t21
------– g ν( )φ–=

t∂
∂φ φnoise

φ
tc
---–=

z∂
∂φ g ν( )φ=

t∂
∂N2 g ν( )ϕ– ϕ α ν( )N2 β ν( )Ntot–[ ]– α ν( )ϕ N2

β ν( )
α ν( )
------------Ntot––= = =

α ν( ) σ21 ν( ) 1

K2 q( )
q 0=

Q



------------------------
gd N20( )
gd N10( )
------------------- 1

K1 p( )
p 0=

P



------------------------+=
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, (9.214)

. (9.215)

We may make the substitutions  and ,

. (9.216)

Equation (9.216) may be solved by the Frantz-Nodvik method for the important special case of a square
temporal pulse traveling through an amplifying medium, as illustrated in Fig. 9.5. Consider the optical field
to be of intensity I and of duration Dt. The potential photon flux increase due to the population inversion is

, (9.217)

where L is the length of the gain region. The net energy of an incident square pulse of irradiance  and
temporal length Dt, giving the energy density as I(0)Dt. The energy density in a gain sheet representing a
length of L is N '(0)hnL. The sum of these two energy densities is a constant by conservation of energy. 

total energy density = . (9.218)

By dividing by Dt, we can calculate the maximum possible irradiance if all the population inversion were
transformed into light,

, (9.219)

and by dividing by hnL, we have the maximum population inversion if all the light were subsumed by
stimulated absorption,

. (9.220)

We can use N 'max to calculate ,

. (9.221)

Equation (9.216) now takes the form,

. (9.222)

Equation (9.222) has the exact solution,

β ν( ) σ21 ν( )
gd N20( )
gd N10( )
------------------- 1

K1 p( )
p 0=

P



------------------------=

z∂
∂ϕ g ν( )φ ϕ α ν( )N2 β ν( )Ntot–[ ]= =

N′ N2
β ν( )
α ν( )
------------Ntot–= φ I

hν------=

z∂
∂ I z( ) α ν( )N′ z( )I z( )=

N′ 0( )L

I z( )

I 0( )Δt N′ 0( )hνL+

Imax I 0( ) N′hνL
Δt----------------+=

N′max N′ 0( ) I 0( )Δt
hνL----------------+=

N′ z( )

N′ z( ) N′max
I z( )Δt
hνL---------------–=

z∂
∂ I z( ) α ν( )N′ z( )I z( ) α ν( ) N′max

I z( )Δt
hνL---------------– 

  I z( )=
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, (9.223)

, (9.224)

. (9.225)

At low saturation, Eq. (9.223) approaches the expected simple exponential gain. At high saturation,
Eq. (9.223) approaches Imax. Eq. (9.223) works well for both high and low energy amplifiers and the rate
equation algorithms in GLAD take advantage of this simplification.

9.7.1 Sample Calculation: general, three level laser  
Assume the following values:

linewidth (9.226)

inverse wavelengths of lasing levels , (9.227)

(9.228)

(9.229)

(9.230)

(9.231)

The spontaneous emission time calculated from the cross section is

(9.232)

Assuming a non-spontaneous decay rate of t21 = 1×10-6sec, the net decay rate is

. (9.233)

I L( )
ImaxI 0( )

I 0( ) Imax I 0( )–[ ]e
α ν( )Nmax

′ L–
+

--------------------------------------------------------------------------=

ΔI I L( ) I 0( )–=

ΔN2 ΔN2
′ ΔIΔt

hνl------------–= =

Δν 2.43 11×10 sec 1–=

1 λ N20( )⁄ 1.0327 4×10 cm 1–= 1 λ N10( )⁄ 6.12 2×10 cm 1–=

v c 1
λ N20( )
----------------- 1

λ N10( )
-----------------– 

  2.9124837 14×10 sec 1–= =

λ c
v-- 1.029336 4–×10 cm= =

f ν0( ) 1
2π
------ Δν

02 Δν
2------- 

  2
+

--------------------------- 2
πΔν---------- 2.619834 12–×10 sec= = =

σ21 ν0( ) 2.2 20–×10 cm2=

tspont
λ2

8πn2σ21 ν0( )
-------------------------------f ν0( ) 1.51559408 2–×10 sec= =

t2
1

1
tspont
----------- 1

t21
------+

------------------------ 9.9934024 7–×10 sec= =
Jump to: ,  Commands  Examples



152 GLAD Theory Manual
Select the pumping rate to be twice the critical pumping rate, Rt2 = 2, from Eq. (9.152),

R = 2 × 1/t2= 2/t2 = 2.01319615×104sec-1. (9.234)

. (9.235)

. (9.236)

With this pumping rate from Eq. (9.234) and the expression for Nss, Eq. (9.151),

cm-3. (9.237)

The population change by Eq. (9.153) is . (9.238)

For a medium initially at  and a pumping time of t = 4×10-9sec, 

(9.239)

The population after the initial interval of pumping is

. (9.240)

Taking into account the relative steady state population ratios according to Eq. (9.202) for T = 300ºK.

b factor (Eq. (9.214)) = (9.241)

Jtot 2 j/cm3=

Ntot
Jtot
hv------- 1.03637053 14×10 cm 3–= =

Nss
Rt2Ntot
1 Rt2+-----------------

2Ntot
3------------ 6.90913689 18×10= = =

ΔN2 t( ) Nss N2 0( )–[ ] 1
Rt2 1+

t2
-----------------t– 

 exp–=

N2 0( ) 6 18×10=

ΔN2 t( ) 6.9091369 18×10 6 18×10–( ) 1 3
9.9934024 7–×10
---------------------------------------4 9–×10– 

 exp–=

1.084516 16×10 cm 3–=

N2 t( ) N2 0( ) ΔN2 t( )+ 6.010845 18×10 cm 3–= =

gd N20( )
gd N10( )
-------------------

Ntot

K1 q( )
p 0=

P



------------------------ σ21
1

21.151186-------------------------σ21 0.04648599σ21= =
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a factor (Eq. (9.213)) = (9.242)

modified cross section = (9.243)

, (9.244)

and . (9.245)

(9.246)

The contribution of N '(0) to the maximum intensity is N '(0)hnL/Dt. Given h = 6.626×10-34 and
c = 2.99792458×1010cm/sec, hn = 1.92981172×10-19. Given a pulse width of Dt = 4nsec and length of
L = 1cm, the contribution of N'(0) to the maximum intensity is N '(0)hnL/Dt = 1.85000665×108 w/cm2. Imax
represents the saturation value. From Eq. (9.219). For a starting irradiance of I(0) = 2w/cm2

. (9.247)

(9.248)

, (9.249)

, (9.250)

. (9.251)

1

K2 q( )
q 0=

Q



------------------------
gd N20( )
gd N10( )
------------------- 1

K1 p( )
p 0=

P



------------------------+ σ21
1

1.48896------------------- 1
21.151186-------------------------+ σ21=

0.718094σ21=

α 0.718094σ21 0.718094 2.2 20–×10 cm2× 1.579807 20–×10 cm2= = =

β
α---

1.48896
0.718094---------------------- 0.064735245= =

N′ N2
β
α---Ntot– 6.909136887 18×10 0.064735245( ) 6.90913689 18×10( )–= =

3.834584 18×10 cm 3–=

g0 αN′ 0.718094 2.2 20–×10 3.834584 18×10⋅ ⋅ 6.05790312 2–×10 cm 1–= = =

Imax I 0( ) N′ 0( )hνL Δt⁄+ 2 1.85000665 8×10+ 1.85000667 8×10 w/cm2= = =

N′max
ImaxΔt
hνL--------------- 3.8345848 18×10 cm 3–= =

I L 1cm=( )
ImaxI 0( )

I 0( ) Imax I 0( )–( )e
α ν( )Nmax

′ L–
+

--------------------------------------------------------------------------

L 1cm=

2.124903w/cm2= =

ΔI I L( ) I 0( )+ 0.124903122w/cm2= =

ΔN2 ΔN2
′ ΔIΔt

hνL------------ 2.5889183 9×10 photons/sec3= = =
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9.8 Raman Modeling  
In its most general form, Raman interactions can be highly complex. It may be necessary to treat

transient effects, multiple longitudinal modes, multiple Stokes orders, four-wave mixing effects, and
spontaneous emission.

The original objective was to treat an excimer/Raman system characterized by a broad spectrum of
longitudinal modes. The spectral characteristics of the pump and Stokes beam may be different and the gain
of the Raman process depends on the spectral correlation. The treatment is facilitated by the reasonable
assumption that the transverse characteristics of all modes is identical. The general multiple mode
description, including nonresonant terms, is

, , (9.252)

where Pj and Sj are the photon flux complex amplitudes of the jth pump and Stokes modes (offset in
frequency by the Raman shift), G is the homogeneously broadened line width, g is the small signal gain
coefficient and D is the mode spacing. The indices n and k designate the nth nonresonant term and the kth

mode respectively. The variable ν is a measure of the group velocity dispersion,

, (9.253)

where vp and ns are the group velocities of the pump and Stokes waves.
The photon flux complex amplitude is related to the irradiance complex amplitude by , where f is the

optical frequency. For example the photon flux complex amplitude of the pump beam is

, (9.254)

where h is Plank's constant Ep is the complex amplitude used in GLAD.
In this notation the line width of a single mode is assumed to be zero and the mode spacings of pump

and Stokes beams are identical. When finite spectral width is to be included, the summations are replaced
with integrations over frequency.

If , there is substantial gain only when n = 0. This is the case of resonant interaction. Even in the
case where we can not assume , nonresonant terms may be negligible (except for print through effects)
if there are a sufficient number of modes because the nonresonant terms add incoherently to the resonant
term. For broadband excimer/Raman interactions typical of the colinear Raman geometry, the nonresonant
terms may be neglected. In that case, we may simplify Eq. (9.252) by setting n = 0. The simplified equations
are

, . (9.255)

In more compact notation, the inner product may be written,

z∂
∂Pj g

2---
PkSk n–

* Sj n–
*

1 i2nΔ
Γ

------------+
-----------------------------ei j k–( )Δνz

k


n
–= z∂

∂Sj g
2---

SkPk n–
* Pj n–

*

1 i2nΔ
Γ

------------+
-----------------------------ei k j–( )Δνz

k


n
=

ν 1
νp
----- 1

νs
-----–=

f

P
Ep

hf
---------=

Δ Γ»
Δ Γ»

z∂
∂Pj g

2--- Sj PkSk
*( )

k
–= z∂

∂Sj g
2--- Pj SkPk

*( )
k
=
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, , (9.256)

where

= vector of all pump longitudinal mode complex amplitudes, 

= vector of all 1st Stokes longitudinal mode complex amplitudes, 

.

If  and  consist of a single mode, Eq. (9.256) simplifies, in air, to

, . (9.257)

9.8.1 Photon-Flux Raman Model  
A simple model of Raman scattering uses only the intensities of the seed and pump beam. This model

neglects four-wave mixing, second-Stokes, and anti-Stokes effects. This model is commonly referred to as
the photon-flux model.

From Eq. (9.257), an expression in terms of the photon flux parameters may be derived,

, . (9.258)

Using Eq. (9.254), we have the relation

, (9.259)

where Is and Ip are the seed and pump intensities and ls and lp are the seed and pump wavelengths. Using
Eqs. (9.258) and (9.259) an expression for the intensity after propagation by a distance Dz, an analytical
solution is possible[2], as shown below,

, (9.260)

. (9.261)

These equations are solved simultaneously along with diffraction propagation by the command, raman.

z∂
∂Pj g

2---Sj S
*

P⋅( )–= z∂
∂Sj g

2---Pj P
*

S⋅( )=

P

S

S
*

P⋅ Sk
*Pk

k
=

S P

z∂
∂P g

2--- S 2P–= z∂
∂S g

2--- P 2S=

z∂
∂ P 2

g S 2 P 2–= z∂
∂ S 2

g P 2 S 2=

Is
Ip
----

λs
λp
----- S 2

P 2---------=

Is x y z Δz+, ,( )
Ip x y z, ,( )

λs
λp
-----Iz x y z, ,( )+

λs
λp
-----

Ip x y z, ,( )
Is x y z, ,( )
----------------------- Ip x y x, ,( )

λs
λp
-----Is x y z, ,( )+ gΔz–

 
 
 

exp+

----------------------------------------------------------------------------------------------------------------------------------=

Ip x y z Δz+, ,( ) Ip x y z, ,( )
λs
λp
----- Is x y z, ,( ) Is x y z Δz+, ,( )–[ ]+=
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9.8.2 Raman Interactions with Multiple Stokes Beams  
It is straightforward to extend Eq. (9.256) to include 1st and 2nd Stokes beams:

, (9.262)

,

,

where T is the 2nd Stokes amplitude, gps is the Raman gain for pump to 1st Stokes, and gst is the Raman gain
for 1st Stokes to 2nd Stokes.

In the case of a single longitudinal mode, Eq. (9.262) simplifies to

, (9.263)

,

.

Equation (9.263) is appropriate for single mode, multiple Stokes calculations.

9.8.3 Four-Wave Mixing  
In the general case, four-wave mixing takes the form

, (9.264)

where  and  are the angular frequency and wave number of the ith beam. The sign of change  and
 according to whether E or its complex conjugate is used in Equation (9.263). The term  is the

phase matching factor. In general, there is significant interaction only if both of the following conditions are
met

, (9.265)

. (9.266)

z∂
∂Pj gps

2-------Sj S
*

P⋅( )–=

z∂
∂Sj gps

2-------Pj P
*

S⋅( )
gst
2------Tj T

*
S⋅( )–=

z∂
∂Tj gst

2------Sj S
*

T⋅( )–=

z∂
∂P gps

2------- S 2P–=

z∂
∂S gps

2------- P 2S
gst
2------ T 2S–=

z∂
∂T gst

2------ S 2T–=

z∂
∂E4 χ123E1E2E3 j k1 k2 k3 k4–+ +( ) z⋅ j ω1 ω2 ω3 ω4–+ +( )t–[ ]exp∝

ωi ki ωi
ki jk z⋅( )exp

ω1 ω2 ω3 ω4–+ + 0=

k1 k2 k3 k4–+ +( ) z⋅ 0=
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The latter term is often called the phase matching condition. As Eq. (9.263) is integrated over distance ,
the phase matching condition determines how coherent the effect is. If , the average gain goes
to zero because of the rapidly rotating phase factor. In the general case, the normalized phase factor is,

. (9.267)

The  function drives the effective gain to zero for large values of .

9.8.3.1 Raman amplification as four-wave mixing 
One may consider the single line Raman process to be a partially degenerate form of four-wave mixing

in which

, , , and , (9.268)

so that the exponential term for ω is exactly zero and the exponential term for k is zero in the absence of
dispersion. Consequently there is no phase matching condition for Raman scattering. 

9.8.3.2 General four-wave mixing equations 
Four-wave mixing may cause 2nd Stokes production in a Raman cell when both pump and 1st Stokes

beams are present in significant magnitude. The equations for four-wave mixing, including multiple
longitudinal modes, is

, (9.269)

,

.

where  and  is the gain coefficient for four-wave mixing.
The single mode form of Eq. (9.269) is shown below.

, (9.270)

,

Δz
Δk Δz⋅ 0»

1
Δz------ ejΔkΔz

0

Δz

 dz ejΔkΔz 2⁄ ΔkΔz 2⁄( )sin
ΔkΔz 2⁄

---------------------------------=

x( )sin x⁄ Δz

ω1 ωs= ω2 ωs–= ω3 ωp= ω4 ωp=

z∂
∂Pj g4w

2--------eiΔk z⋅ Sj T
*

S⋅( )–=

z∂
∂Sj g4w

2--------e i– Δk z⋅– Tj S
*

P⋅( )
g4w
2--------e i– Δk z⋅ Pj S

*
T⋅( )+=

z∂
∂Tj g4w

2--------eiΔk z⋅ Sj P
*

S⋅( )=

Δk kp kt 2ks–+= g4w

z∂
∂P g4w

2--------eiΔk z⋅ S
2
T*–=

z∂
∂S g4w

2--------– e i– Δk z⋅ TS*P
g4w
2--------e i– Δk z⋅ PS*T+ 0= =
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.

Note that , in the single mode case. 
A closed form solution exists if no Raman amplification is considered and if the phase matching factor

is similar to 1. Let,

, (9.271)

where the average is taken over the propagation distance. The closed form solution is

, (9.272)

.

9.8.3.3 Effect of dispersion
In the absence of dispersion Dk = 0, if all beams are collinear. In fact dispersion in typical gasses such

as hydrogen and methane are significant. In the case of finite dispersion there are combinations of
propagation directions that will result in , where  z is the z-direction unit vector. The dispersion
may be characterized by the Cauchy expression for index of refraction,

, (9.273)

where ac and bc are the Cauchy coefficients and Patm is the pressure in Amagats.
The wave number vector is

. (9.274)

The phase matching factor is 

, (9.275)

where the function  is defined to be

. (9.276)

z∂
∂T g4w

2--------eiΔk z⋅ S2P∗=

∂S ∂z⁄ 0=

α
g4w
2--------eiΔk z⋅ S2 =
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Because the refractive index is similar to one, certain approximations are usually made. We separate the
expression Dk into its dispersive Dkdisp and nondispersive parts Dkangle. The nondispersive term can only
vary with angle. The dispersive term varies with angle and with change in index of refraction

, (9.277)

, (9.278)

. (9.279)

In the expression for Dkangle, acPatm can be neglected. The small angle approximation can also be made for
,

, (9.280)

where θ is the angle between k and z. Also, it should be noted that if lp, ls, and lt and satisfy the Raman
conditions, 

, (9.281)

,

where DwR is the Raman frequency shift then,

. (9.282)

The change in angle is, therefore,

. (9.283)

In the dispersive term, the angular dependency may be neglected, ,

. (9.284)

The final expression is obtained from Eqs. (9.283) and (9.284)

Δk Δkangle Δkdisp+=
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3----- 2
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. (9.285)

9.8.3.4 Sample calculation: dispersion in four wave mixing
To illustrate these effects, consider the case of an excimer/Raman system with

 = 0.353 micron,  = 0.414 micron,  = 0.499 micron.

In this case the pump and 2nd Stokes beam are to move parallel to the optical axis and the 1st Stokes beam
is at an angle, qs. Assume a pressure Patm = 3. For hydrogen ac = 13.6×10-5, bc = 7.70 x 10-11. Eqs. (9.283)
and (9.284) take the value

 cm-1,

 cm-1,

 cm-1.

If qs = 0, then a propagation of about Dz = 12.3 cm will result in a value of DkDz = 2p, which drives four
wave mixing to zero. DkDz = 0, if radians. This is the phase matching condition which results
in maximum four-wave mixing amplification.

9.8.3.5 Calculation of the wavefront angles
Equation (9.285) requires determination of the propagation angles of the P, S, and T beams with respect

to the z-axis. In the case of beams with significant wavefront curvature or aberration the beam angles vary
across the aperture. In this case the local angles are used. The local angles are calculated from the complex
amplitude, as follows. The value for qx will be derived here. The derivation for qy is identical. Let a(i+1)
and a(i – 1) be the complex amplitude of two points adjacent to a(i). The difference complex amplitude is

. (9.286)

The unit vector (in complex space) parallel to a(i) is àa: 

. (9.287)

The component of Da perpendicular to àa is

. (9.288)
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-----–+ π

θp
3

λp
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The local wavefront angle is

. (9.289)

In addition we need to consider the overall tilt direction of the beam, qtilt, and the radius of curvature, R. The
total wavefront angle is

. (9.290)

A similar calculation is used to get the y-angles. The total angle is used in Eq. (9.280) to determine the phase
matching condition.

9.9 Optical Parametric Oscillator  
For three plane waves, the steady-state equations for the optical parametric oscillator (OPO) is:

, (9.291)

, (9.292)

, (9.293)

. (9.294)

Direct solution of these equations for beams containing a distribution of k-vectors (true of beams with
aberration and/or finite irradiance distributions) requires that for each k-vector component to be integrated
in z double integral over k-vectors be evaluated:

, (9.295)

, (9.296)

. (9.297)

Solving the equations as defined in Eqs. (9.295)–(9.297) is difficult because there is a double integral
for each of three fields at each point to be evaluated. A direct solution of Eqs. (9.295)–(9.297) is quite
impractical for numerical evaluation of the transverse modes in a laser cavity where arrays of typical size
of 128×128 must be propagated 100's of times to reach the steady-state condition—on the order of 106

double integrals must be evaluated.
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9.9.1 Formulation for Efficient Solution  
We can rewrite the equations in a form which will execute efficiently. The key is to perform the kinetics

calculations in the spatial domain and intersperse diffraction propagation steps. Let us write each field in
the form , where k is a constant vector representing the average k-vector for the
beam. The residual angular errors manifest themselves as phase errors in the three complex amplitudes
transverse distributions. By including steps of diffraction propagation, the three transverse fields will exhibit
the correct diffraction behavior.

Propagation of a plane wave is described in Section 3.5. From Eq. (3.36) we have a factorization of the
phase due to propagation into  and  in OPO calculations the constant
phase. The effect of  will be included in the solution of the differential equations in the spatial
domain and , the quadratic phase factor, and will be included, as usual, by the
standard diffraction propagation routines in GLAD.

Smith, et. al., used a similar procedure with the principle distinctions that they explicitly form the three
medium polarizations based on the products , , and  and then Fourier
transform the medium polarizations to perform the kinetic calculations in the frequency domain[9]. This
approach requires Fourier transformation of six fields: , , , , , and . For the model used in
GLAD, the medium effects are implemented in the spatial domain so that only the optical fields need be
Fourier transformed, cutting the number of Fourier transform operations from six to three per step. The step
length requirement is the same for both methods. Smith, et. al., also integrate the three kinetic equations
directly where the model in GLAD uses a closed-form solution of the paired signal and idler equations and
incorporate this closed-form solution into a split-step solution with the kinetic equation for the pump,
resulting in excellent numerical stability for high gain cases. The set of differential equations is

We may write the diffraction effects as differential equations

, (9.298)

, (9.299)

. (9.300)

We may write the diffraction effects as differential equations

, (9.301)

, (9.302)

, (9.303)

but these are conveniently solved by Fourier transforms using FFT methods according to the usual
propagation routines in GLAD.
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jkz( )exp
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The kinetics equations may be solved by finite difference methods. Integrating Eqs. (9.298)–(9.300)
from 0 to , we have

, (9.304)

, (9.305)

, (9.306)

where the scalar dispersion term is

. (9.307)

The dispersion terms of Eqs. (9.304)–(9.306) may be integrated according to Eq. (9.267). The sin(x)/x
function drives the effective gain to zero for large values of  and goes to unity for small values,

, (9.308)

, (9.309)

. (9.310)

Equations (9.300)–(9.302) and Eqs. (9.303)–(9.305) may be solved by split-step methods. Note that the
double integrals of Eqs. (9.295)–(9.297) are not required.

The coupling coefficients may be simplified by assuming κ is real. Only one coupling constant is needed
provided the optical frequency and wave number are included. In gaussian units, according to Shen[10]:

, (9.311)

, (9.312)

. (9.313)
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9.9.2 Check of Energy Conservation  
Energy is conserved, to first order, by the three coupled differential equations as well as the finite

difference formulation. We use the fact that the irradiance is related to the electric field by

. (9.314)

The electric permeability of free space  is defined to be  faraday/m (we also have the
relationship c = ), where  henry/m. For an incremental change in electric field, the
change in irradiance is :

, (9.315)

, (9.316)

, (9.317)

energy conservation , (9.318)

where we take advantage of the frequency matching condition ws + wi – wp = 0. The finite difference
equations conserve energy to first order, but energy is not conserved to second order by the finite difference
equations.

In addition we have a constant number of photons interacting:

. (9.319)

9.9.2.1 Expression in MKSA units 
From Eq. (9.311–9.313) we have

, (9.320)

, (9.321)

. (9.322)
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We can write κ in terms of the nonlinear susceptibility

, (9.323)

where  is in gaussian units:

, (9.324)

, (9.325)

. (9.326)

The above equations are in gaussian units following Shen. It is more convenient to use MKSA than
gaussian units (GLAD is MKSA with the exception that distance is in centimeters). Converting to MKSA
we employ the following substitutions

, , . (9.327)

From this point forward we will refer to  as simply .  is twice the d-coefficient value
which is often seen in the literature and has units of meters/volt.

Rewriting Eqs. (9.324)–(9.326) entirely in MKSA, we have

, (9.328)

, (9.329)

. (9.330)

In terms of the complex amplitude in GLAD

 and , (9.331)

where μ = 1 for ordinary refractive materials.
The phase of the three fields is calculated and stored in double precision to allow for longer propagation

distances and incorporated into the term  which includes the absolute phase of the three fields Df
= fp – fs – fi. The coupling constant may be conveniently be redefined:
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. (9.332)

ák has units of [w–½], we may calculate gain in terms of pump irradiance and ák

, (9.333)

, (9.334)

. (9.335)

The characteristic lengths for these equations are

, , , . (9.336)

The least of the critical lengths should be used in solving Eqs. (9.333)–(9.335) should be selected and
the integration step length set well below the minimum of the critical lengths.

In the special case where  then

, (9.337)

and we may solve Eqs. (9.333) and (99.335) assuming Ap is effectively constant

, (9.338)

. (9.339)

Equations (9.338) and (9.339) have a closed form solution

, (9.340)

, (9.341)

, (9.342)
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. (9.343)

We use the results of the closed form solution of As and Ai to calculate Dap

, (9.344)

, (9.345)

, (9.346)

. (9.347)

Regrouping for better numerical solution

, (9.348)

. (9.349)

For small g we may eliminate the factor of 

, (9.350)

.(9.351)

We may write the condition  in terms of 
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, (9.352a)

. (9.353)

For both |Dk| > |g0| and small g, we may eliminate the factor of 1/g

, (9.354)

. (9.355)

We use the results of the closed form solution of As and Ai to calculate DAp.

. (9.356)

Solving the Eq. (9.356) for , we have

, (9.357)
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, , (9.359)
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B3 Ai 0( )= B4 jΔkAi 0( )– j
ωi
ωs
------g0As

* 0( )+=
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, (9.360)

. (9.361)

Solving the Eq. (9.356) for large dispersion, , we have

, (9.362)

, (9.363)

, (9.364)

. (9.365)

For small values of 

. (9.366)

9.9.3 Spatial Frequency Content and Axial Sampling  
The axial steps must be sufficiently short that the angles are well-resolved. The characteristic diffraction

length associated with a given angle θ is

. (9.367)

ΔAp

j
ωp
ωs
------ κ̃

2--- B1B3cosh2 gz
2----- 

 
 

B2B3 B1B4+( )1
g---

gz
2----- 

 
  gz

2----- 
 
 

coshsinh B2B4+ +
0

Δz


1
g2-----sinh2 gz

2----- 
 
 

dz=

ΔAp j
ωp
ωs
------ κ̃

2--- B1B3
1
g---

gΔz
2---------

 
 
 

sinh Δz+ B2B3 B1B4+( ) 1
g2----- gΔz( )cosh 1–[ ]

B2B4
1
g2----- 1

g---
gΔz

2---------
 
 
 

sinh Δz–

+

+













=

Δk g0>

As z( ) B1
g′z
2-------

 
 
 

cos B2
1
g′
---- g′z

2-------
 
 
 

sin+
 
 
 

eiΔkz 2⁄=

Ai z( ) B3
g′z
2-------

 
 
 

cosh B4
1
g′
---- g′z

2-------
 
 
 

sinh+
 
 
 

eiΔkz 2⁄=

ΔAp j
ωp
ωs
------ κ̃

2--- B1B3cos2 g′z
2-------

 
 
 

B2B3 B1B4+( ) 1
g′
---- g′z

2-------
 
 
  g′z

2-------
 
 
 

cossin B2B4+ +
0

Δz


1

g′2
-------sin2 g′z

2-------
 
 
 

dz=

ΔAp j
ωp
ωs
------ κ̃

2--- B1B3
1
g′
---- g′Δz( )sin Δz+ B2B3 B1B4+( ) 1

g′2
------- 1 g′Δz( )cos–[ ]

B2B4
1

g′2
------- Δz 1

g′
---- g′Δz( )sin–

+

+













=

g′

ΔAp j
ωp
ωs
------ κ̃

2--- B1B3 2Δz g′2Δz3

3!----------------– B2B3 B1B4+( )Δz2

2-------- B2B4
Δz3

3!--------+ +
 
 
 

=

zchar
λ

2θ2--------=
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For a given sample spacing of Dx the maximum angle is ,

. (9.368)

Equation (9.368) gives a value of characteristic diffraction length sufficient to satisfy any angle in the
computer array with sample spacing of Dx. The actual axial step size should be chosen to be several times
less than the characteristic length given by Eq. (9.368).

Consider a wavelength of 0.4microns, and a maximum angle of 0.005radian, the sample spacing would
be 0.01cm and the characteristic length would be 1cm. A good value for axial sampling would be 0.1 or
0.05cm, giving 10 to 20steps/cm—a quite reasonable value.

9.9.3.1 Numerical example: MKSA and ESU 
In the limit of weak pump depletion, the small signal gain may be calculated in terms of electric field.

From Eq. (9.340):

. (9.369)

Shen gives a numerical example with  esu, , . We have
the relationship

(9.370)

giving

. (9.371)

. Taking  = 100 esu and , equivalent to

. (9.372)

9.9.4 Numerical Example: OPA gain  
It is desired to generate 0.96μ light (l3) by mixing light from a 1.06μ laser (l1) with light from a 10.6μ

laser (l2).

, , , 

, , , L = 1cm, , .

, , 

θmax λ Δx⁄=

zchar
Δx2

2λ---------=

g0
ωsωi
nsni
-----------

μ0
εo
----- χMKSA

2( ) Ep=

χesu 2.7 8–×10= λ1 λ2 1.06μ≈ ≈ n1 n2 2.23= =

χMKSA
2( ) 4πε0

3 4×10
--------------χesu

2( )=

χMKSA
2( ) 10.02 23–×10=

g0 3.01 5–×10 Ep= Ep np 2.2≈

Ep 100 esu= Ip→
cnε0

2----------- 100 esu 3 4×10×
2

2.63 10×10 w/m2 2.63 6×10 w/cm2= = =

I1 0( ) A1 0( ) 2 104w/cm2= = I2 0( ) A2 0( ) 2 1w/cm2= = I3 0( ) A3 0( ) 2 0 w/cm2= =

λ1 1.06μ= λ2 10.6μ= λ3 0.963636μ= n1 n2 n3 2.6= = = χ 2( ) 1.1 20–×10  C/V2=

ω1 1.77702983 15×10= ω2 1.77702983 14×10= ω3 1.59932685 15×10=
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, 

.

9.10 Sum-Frequency Generation (SFG)  
Sum-frequency generation (SFG) is used for up-conversion. See Yariv, Ref. 11. Parametric interactions in
a crystal can be used to convert a low frequency w1 to a high frequency w3 by mixing it with a strong laser
beam at w2. In a representative case a pump of 1.06 micron is mixed with a signal of 10.6 micron to create
an up-converted to 0.96 micron light. We may consider A1 to be the pump beam, A2 the signal, and A3 the
up-converted signal. Following the description by Yariv, a pump beam with frequency w1 and energy w1,
signal laser with frequency w2 and enery w2, and up-converted beam with w3 and energy w3, we have the
relationships:

, (9.373)

net energy change = . (9.374)

The up-converted frequency is the sum of the signal and laser pump frequencies. Equation (9.374) indicates
that a photon of the signal and pump beams are annihilated to create a photon of the up-converted beam.
The optical energy is conserved in the beams with no heat dissipated into the medium.

The fundamental differential equations are similar to the optical parametric amplifier (OPA):

, (9.375)

, (9.376)

, (9.377)

where

 . (9.378)

Taking  to be real and defining k strictly real

. (9.379)

Let us check conservation of energy and photon count:

κ̃ 1
2

-------ω2
μ0
ε0
-----
 
 
 

3 4⁄
1

n1n2n3
---------------------χ 2( ) 2.411639 3–×10= =

μ0
ε0
-----
 
 
 

3 4⁄
4π 7–×10

8.85 12–×10
--------------------------
 
 
 

3 4⁄

7.3147577 3×10= =

g0 2
ω3
ω2
------ κ̃ A1 0( ) 1.446983= =

ω1 ω2+ ω3=

hω3 hω1– hω2– 0=

z∂
∂ A1 x y z, ,( ) j

ω1
ω2
------κ̃*

A2
* x y z, ,( )A3 x y z, ,( )ejΔkz=

z∂
∂ A2 x y z, ,( ) jκ̃*

A1
* x y z, ,( )A3 x y z, ,( )ejΔkz=

z∂
∂ A3 x y z, ,( ) j

ω3
ω2
------κ̃A1 x y z, ,( )A2 x y z, ,( )e j– Δkz=

κ̃ 1
2

-------ω2
μ0
ε0
-----
 
 
 

3 4⁄
1

n1n2n3
---------------------χ 2( )=

κ̃

κ 1
2

-------
μ0
ε0
-----
 
 
 

3 4⁄
1

n1n2n3
---------------------χ 2( )=
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(9.380)

, (9.381)

, (9.382)

, (9.383)

energy conservation . (9.384)

photon count . (9.385)

The equivalence of incremental changes in photons given by Eq. (9.385) in called the Manley-Rowe
relationship[12].

As the pump beam is generally much stronger than the other beams, pump depletion, as a percentage,
is usually quite weak. It is then reasonable to neglect pump depletion to first order. We may then reorganize
the three coupled differential equations into the two coupled equations for the coupling of signal and up-
converted beam:

, (9.386)

, (9.387)

Repeating Eqs. (9.340) and (9.341) with adaptation to SFG, we have:

, (9.388)

Alternatively,

 or (9.389)

. (9.390)

ΔI1 A1
*ΔA1 c.c.+ ω1 jκA1

*A2
*
A3 ejΔkz zd

0

Δz

 c.c.+
 
 
 

= =

ΔI2 A2
*ΔA2 c.c.+ ω2 jκA1

*A2
*
A3 ejΔkz zd

0

Δz

 c.c.+
 
 
 

= =

ΔI3 A3ΔA3
* c.c.+ ω3– jκA1

*A2
*
A3 ejΔkz zd

0

Δz

 c.c.+
 
 
 

= =

ΔI1 ΔI2 ΔI3–+ ω1 ω2 ω3–+( ) jκA1
*A2

*
A3 ejΔkz zd

0

Δz

 c.c.+
 
 
 

0= =

ΔI1

hω1
---------–

ΔI2

hω2
---------–

ΔI3

hω3
---------= =

A2 z( )∂
z∂

---------------- jκA1
*A3ejΔkz jκ A1 e jθ– A3ejΔkz= =

A3 z( )∂
z∂

---------------- j
ω3
ω2
------κA1A2e j– Δkz j

ω3
ω2
------κ A1 ejθA2e j– Δkz= =

g0
2 4

ω3
ω2
------ κ 2 A1

2 2ω2ω3
μ0
ε0
-----
 
 
 

3 2⁄
1

n1n2n3
---------------- χ 2( ) 2

A1
2 ω2ω3

n2n3
-------------

μ0
ε0
----- χ 2( ) 2

E1
2= = =

κ
g0
2-----

ω2
ω3
------ 1

A1
---------= g0 2κ A1

ω3
ω2
------=

g g0
2 Δk2– 

 
1 2⁄

=
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, (9.391)

with the rightmost expression written to be of the same from as is used by Yariv, Eq. (17.6-4), where our
c(2) is the same as Yariv’s d [11]. g is found by 

. (9.392)

where . (9.393)

The closed-form solution of Eqs. (9.386) and (9.387) are:

, (9.394)

. (9.395)

The C-coefficients are:

, (9.396)

, (9.397)

, (9.398)

. (9.399)

Let us check that the closed form solution of A2(z) satisfies Eq. (9.386). (9.400)

g0
2 g2 Δk2– 2

ω2ω1
n1n2n3
----------------

μ0
ε0
-----
 
 
 

3 2⁄

χ 2( ) 2
A1

2 ω2ω3
n2n3
-------------

μ0
ε0
----- χ 2( ) 2

E1
2= = =

g + g0
2 Δk2–=

ejθ A1
A1
---------=

A2 z( ) C2+e
jgz

2----- C2–e
jgz

2-----–
+ e

jΔkz
2---------

=

A3 z( ) C3+e
jgz

2----- C3–e
jgz

2-----–
+ e

jΔkz
2---------–

=

C2+
1

2g------ g Δk–( )A2 0( )
ω2
ω3
------g0A3 0( )+ e

jθ
2---=

C2–
1

2g------ g Δk+( )A2 0( )
ω2
ω3
------– g0A3 0( ) e

jθ
2---=

C3+
1

2g------ g Δk+( )A3 0( )
ω3
ω2
------g0A2 0( )+ e

jθ
2---–

=

C3–
1
2--- g Δk–( )A3 0( )

ω3
ω2
------– g0A2 0( ) e

jθ
2---–

=
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(9.401)

(9.402)

(9.403)

(9.404)

(9.405)

(9.406)

(9.407)

We have the C-coefficients from Eqs. (9.396) and (9.399):

(9.408)

A2 z( )∂
z∂

---------------- z∂
∂ C2+e

jgz
2----- C2–e

jgz
2-----–

+ e
jΔkz

2---------

 
 
 
 
 

=

A2 z( )∂
z∂

---------------- z∂
∂ C2+e

j g Δk+( )z
2-----------------------

C2–e
j g Δk–( )z

2-----------------------–
+=

A2 z( )∂
z∂

---------------- j g Δk+( )
2--------------------e

j g Δk+( )z
2-----------------------

C2+ j g Δk–( )
2--------------------e

j g Δk–( )z
2-----------------------–

C2––=

A2 z( )∂
z∂

---------------- j g Δk+( )
2--------------------e

j g Δk+( )z
2----------------------- 1

2g------ g Δk–( )A2 0( )
ω2
ω3
------g0A3 0( )+ e

jθ
2---=

j g Δk–( )
2--------------------e

j g Δk–( )z
2-----------------------– 1

2g------ g Δk+( )A2 0( )
ω2
ω3
------– g0A3 0( ) e

jθ
2---–

A2 z( )∂
z∂

---------------- j g2 Δk2–( )
4g-------------------------e

jθ
2--- e

j g Δk+( )z
2-----------------------

A2 0( ) e
j g Δk–( )z

2-----------------------–
g0A2 0( )–   =

+ j
g0
4g------

ω2
ω3
------e

jθ2--- g Δk+( )e
j g Δk+( )z

2-----------------------
A3 0( ) g Δk–( )e

j g Δk–( )z
2-----------------------–

g0A3 0( )+

A2 z( )∂
z∂

---------------- j
g0

2

4g------e
jθ
2--- e

j g Δk+( )z
2-----------------------

A2 0( ) e
j g Δk–( )z

2-----------------------–
A2 0( )–   =

+ j
g0
4g------

ω2
ω3
------e

jθ
2--- g Δk+( )e

j g Δk+( )z
2-----------------------

A3 0( ) g Δk–( )e
j g Δk–( )z

2-----------------------–
A3 0( )+

A2 z( )∂
z∂

---------------- j
g0
2-----e

jθ
2---e

j g Δk+( )z
2----------------------- ω2

ω3
------ 1

2g------ g Δk+( )A3 0( )
ω3
ω2
------g0A2 0( )–   =

+ j
g0
2-----e

jθ
2--- ω2

ω3
------e

j g Δk–( )z
2-----------------------– 1

2g------ g Δk–( )A3 0( )
ω3
ω2
------g0A2 0( )–

A2 z( )∂
z∂

---------------- j
g0
2-----

ω2
ω3
------e

j g Δk+( )z
2-----------------------

C3+e jθ–= j
g0
2-----

ω2
ω3
------e

j g Δk–( )z
2-----------------------–

C3–e jθ–+
Jump to: ,  Commands  Examples



175
(9.409)

Repeating Eq. (9.389):

(9.410)

Finally we recover the desired differential equation for SFG matching Eq. (9.386)

(9.411)

By symmetry, 

, (9.412)

matching Eq. (9.397).
We use the results of the closed form solution of A2 and A3 from Eqs (9.401) and (9.402) in Eq. (9.375):

. (9.413)

For g0 > Dk, g is real valued and we can replace the complex exponential treatment above with an
expression in sines and cosines by regrouping terms in Eq. (9.394) and (9.395):

, (9.414)

, (9.415)

, (9.416)

. (9.417)

Equation (9.413) can also be regrouped:

A2 z( )∂
z∂

---------------- j
g0
2-----e jθ– C3+e

jgz
2----- C3–e

jgz
2-----–

+
 
 
 

ejΔkz=

g0 2κ A1
ω3
ω2
------=

A2 z( )∂
z∂

---------------- jκ A1 e jθ– C3+e
jgz

2----- C3–e
jgz

2-----–
+

 
 
 

ejΔkz jκA1
*A3ejΔkz= =

A3 z( )∂
z∂

---------------- jκ A1 ejθ C2+e
jgz

2----- C2–e
jgz

2-----–
+

 
 
 

e jΔkz– jκ
ω3
ω2
------A1A2e j– Δkz= =

ΔA1 j
ω1
ω2
------κ C2+

* C3–
1 e jgΔz––

jg----------------------- C2–
* C3+

ejgΔz 1–
jg-------------------- C2+

* C3+ C2–
* C3–+( )Δz+ +=

A2 z( ) A2 0( ) gz 2⁄( )cos jC2 gz 2⁄( )sin+[ ]ejΔkz 2⁄=

A3 z( ) A3 0( ) gz 2⁄( )cos jC3 gz 2⁄( )sin+[ ]e j– Δkz 2⁄=

C2
1
g--- ΔkA2 0( )–

ω2
ω3
------g0A3 0( )+ e

jθ
2---=

C3
1
g--- ΔkA3 0( )

ω3
ω2
------g0A2 0( )+ e

jθ
2---–

=
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. (9.418)

Consider the case of Dk = 0 and A3(0) = 0:

, (9.419)

so the constant term goes to zero.
In the special case where Δk = 0,

, (9.420)

from Eq. (9.391)

, (9.421)

. (9.422)

For the simplest case of Δk = 0 and A3(0) = 0:

, (9.423)

. (9.424)

The irradiance values for this simple case are

, (9.425)

. (9.426)

ΔA1
ω1
ω2
------ 1

2g------κ

2 C2
*A3 0( ) C3A2

* 0( )– sin2 gz
2----- 

  j A2
* 0( )A3 0( ) C2

*C3– gΔz( )sin j A2
* 0( )A3 0( ) C2

*C3+ gΔz+ +
 
 
 

=

A2
* 0( )A3 0( ) C2

*C3+ A2
* 0( )A3 0( ) A3 0( )*A2 0( )+ 0= =

g0
2 2

ω2ω1
n1n2n3
----------------

μ0
ε0
-----
 
 
 

3 2⁄

χ 2( ) 2
A1

2=

A2 z( ) A2 0( ) g0z 2⁄( )cos j
ω2
ω3
------A3 0( ) g0z 2⁄( )sin+=

A3 z( ) j
ω3
ω2
------A2 0( ) g0z 2⁄( )sin A3 0( ) g0z 2⁄( )cos+=

A2 z( ) A2 0( ) g0z 2⁄( )cos=

A3 z( ) j
ω3
ω2
------A2 0( ) g0z 2⁄( )sin=

I2 z( ) I2 0( )cos2 g0z 2⁄( )=

I3 z( )
ω3
ω2
------I2 0( )sin2 g0z 2⁄( )=
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9.10.1 Numerical Example, Calculation 1  
It is desired to generate 0.96 μ light (l3) by mixing light from a 1.06 μ laser (l1) with light from a 10.6

μ laser (l2).

, , , 

, , , L = 1 cm, 

, , , .

, , .

With  we have:

, , .

,

where .

. For Dk = 0, .

For a single 1 cm step and Δk = 0:

, 

I1 0( ) A1 0( ) 2 104w/cm2= = I2 0( ) A2 0( ) 2 1w/cm2= = I3 0( ) A3 0( ) 2 0 w/cm2= =

λ1 1.06μ= λ2 10.6μ= λ3 0.963636μ=

n1 2.6= n2 2.567= n3 2.597= χ 2( ) 1.1 20–×10  C/V2=

ω1 1.777030 15×10= ω2 1.777030 14×10= ω3 1.954733 15×10=

h 1.05456062 34–×10=

hω1 1.87398569 19–×10= hω2 1.87398569 20–×10= hω2 2.06138425 19–×10=

κ̃ 1
2

-------ω2
μ0
ε0
-----
 
 
 

3 4⁄
1

n1n2n3
---------------------χ 2( ) 2.4284925 3–×10= =

μ0
ε0
-----
 
 
 

3 4⁄
4π 7–×10

8.85 12–×10
--------------------------
 
 
 

3 4⁄

7.31475786 3×10= =

g0 2
ω3
ω2
------ κ̃ A1 0( ) 1.61087966= = g g0 1.61087966= =

C2
1
g--- ΔkA2 0( )–

ω2
ω3
------g0A3 0( )+

ω2
ω3
------A3 0( ) 0.= = =

C3
1
g--- ΔkA3 0( )–

ω3
ω2
------g0A2 0( )+

ω3
ω2
------A3 0( ) 3.316625= = =

gz 2⁄( )cos 1.610880 1× 2⁄[ ]cos 0.6928= = gz 2⁄( )sin 0.7211=

A2 z( ) A2 0( ) gz 2⁄( )cos jC2 gz 2⁄( )sin+[ ]ejΔkz 2⁄ A2 0( ) gz 2⁄( )cos jC2 gz 2⁄( )sin+ 0.6938= = =
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, 

, , .

, , .

, 

,

.

The incremental photon changes P1, P2, and P3 are fairly close as required by Manley-Rowe principles.

A3 z( ) A3 0( ) gz 2⁄( )cos jC3 gz 2⁄( )sin+[ ]e j– Δkz 2⁄ A3 0( ) gz 2⁄( )cos jC3 gz 2⁄( )sin+ j2.3917= = =

ΔA1
ω1
ω2
------ 1

2g------κ̃*

2 C2
*A3 0( ) C3A2

* 0( )– sin2 gz
2----- 

  j A2
* 0( )A3 0( ) C2

*C3– gΔz( )sin+ j A2
* 0( )A3 0( ) C2

*C3+ gΔz+
 
 
 

=

A2
* 0( )A3 0( ) C2

*C3– 1 0× 0 0×– 0= =

A2
* 0( )A3 0( ) C2

*C3+ 1 0× 0 3.316625×+ 0= =

C2
*A3 0( ) C3A2

* 0( )– 0 0× 3.316625 1×– 3.316625–= = 2sin2 gz
2----- 

  0.72202 1.0401= =

ω1
ω2
------ 1

2g------κ̃* 1.777030 15×10
1.777030 14×10
------------------------------------ 1

2 1.61336251×
-------------------------------------× 2.43223549 3–×10× 7.5378 3–×10= =

ΔA1
ω1
ω2
------ 1

2g------κ̃*2sin2 gz
2----- 

  7.5378 3–×10 3.316625– 1.0425×× 2.600182– 2–×10= = =

A1 ΔA1+ 1 2×10 2.600182 2–×10– 99.974= =

I1 A1
2 9994.801w/cm2= = I2 A2

2 0.479964w/cm2= = I3 A3
2 5.72040w/cm2= =

ΔI1 9994.8407 104– 5.19969–= = I2 0.479964 1.0– 0.5200–= = ΔI3 5.72040w/cm2=

P1
ΔI1

hω1
--------- 5.19969–

1.87398569 19–×10
-------------------------------------------- 2.774668– 19×10= = =

P2
ΔI2

hω2
--------- 0.5200–

1.87398569 20–×10
-------------------------------------------- 2.775028– 19×10= = =

P3
ΔI3

hω3
--------- 5.72040

2.06138425 19–×10
-------------------------------------------- 2.775028 19×10= = =
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9.10.2 Numerical Example, Calculation 2  

, , , , , 

, L = 1 cm, , .

From Eq. (9.425) and Eq. (9.426)

. (9.427)

From Eq. (9.391)

(9.428)

(9.429)

, . (9.430)

From Eq. (9.427)

Efficiency of conversion . (9.431)

The conversion efficiency is in good, although not perfect, agreement with Yariv’s result of 6×10-4 on page 
456[11]. 

9.11 Birefringent Effects  
The OPO treatment used here explicitly separates the kinetic and diffraction propagation effects.

Continuing in this vein, we may include birefringent effects by considering only diffraction propagation and
refraction. At this time only uniaxial crystals are considered. For a uniaxial crystal the index of refraction
ellipse may be written:

. (9.432)

I1 A1
2 104w/cm2= = I2 A2

2 1w/cm2= = I3 A3
2 0w/cm2= = λ1 1.06μ= λ2 10.6μ=

λ2 0.963636μ= n1 n2 n3 2.6= = = χ 2( ) 1.1 22–×10  C/V2=

I3 z( )
I2 0( )
------------

λ2
λ3
-----

sin2 g0z
2-------- 

 

cos2 g0z
2-------- 

 
z 0=

-----------------------------------
λ2
λ3
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In terms of the angle of the crystal axis with respect to the propagation direction:

. (9.433)

See Yariv, p88 [11].

. (9.434)

See Shen, p128 [10]. The index of refraction in a small neighborhood of the extraordinary ray is[3]:

 . (9.435)

The term Dq is the incremental angle in the local angular neighborhood of the beam where the spread of k-
vectors due to diffraction and aberration are significant. For a finite value of θ, an incremental angle Dq may
be written in terms of the paraxial angles α and β

, (9.436)

where ψ is the azimuthal angle of the axis of the uniaxial crystal as it projects onto the α-β plane, similar to
the x-y plane, and measured clockwise from the y-axis. Eq. (9.436) is not appropriate when the crystal axis
is closely aligned to the optical axis.

Once ψ is defined, the polarization state may be decomposed into the e-ray which has the electric vector
parallel to ψ and the o-ray which has the electric vector orthogonal to ψ. Since in GLAD we already have a
decomposition into x- and y-states, we may work with this x-y decomposition if the azimuthal angle of the
crystal is constrained to be either 0º or 90º. For ψ = 0º, x-polarization corresponds to the o-ray and y-
polarization corresponds to e-ray. For ψ = 90º, x-polarization corresponds to the e-ray and y-polarization
corresponds to o-ray. The phase factor for diffraction propagation from Eq. (3.36) is 

. (9.437)

The incremental angle Δθ is equivalent to α and β. Including the variation of index with angle from Eq.
(9.435), but neglecting third order terms of the form

 and ,

we have

, (9.438)
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, (9.439)

where ke = 2pne(qe)/l. The linear terms in Eq. (9.439) causes the well-known walk-off effect. The
birefringent walk-off causes the e-component of the beam to acquire a shear with respect to the e-ray
direction due to diffraction propagation. The phase shift as a function of spatial frequency is

, (9.440)

where ξ and η are the spatial frequency components. The walk-off as a function of propagation distance is

walk-off = . (9.441)

In the case of KDP, no = 1.51 and ne = 1.47 for θ = 20º and  = –0.0176, giving a walk-off angle
of about 17 milliradians.

 If ψ = 0, the y-state of polarization is the e-ray and if ψ = 90º the x-state is the e-ray. It is necessary to
set the index of refraction so no and ne correspond to the x- or y-state of polarization appropriately. It is also
necessary to include Eq. (9.433) for whichever state constitutes the e-ray.

9.11.1 Calculation Steps  
The calculation proceeds via the split-step method in several parts:
• Conversion of relative phase to absolute phase by multiplying in  factor from OPL values.
• Point calculation of kinetic interactions with integrated k-vector mistuning by Eqs. (9.306)-(9.308) 

or Eqs. (9.367), (9.368), and (9.435).
• Propagation in birefringent media with different media wavelength for x-and y-polarization states 

and walk-off.

9.12 Second Harmonic Generation
Second harmonic generation may be viewed as a form of coherent amplification. It satisfies the coupled

differential equations[11],

, (9.442)

, (9.443)

where k has units of .
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1
ne θ( )
-------------

dne θ( )
dθ----------------

jΔϕ[ ]exp

∂Aω
z∂

---------- jκAω
* A2ωe j– Δkz=

∂A2ω
z∂

------------ jκ*Aω
2 ejΔkz=

w 1 2⁄–
Jump to: ,  Commands  Exa
mples



182 GLAD Theory Manual
. (9.444)

Note that

. (9.445)

To check energy conservation and Manley-Rowe [12] conformance, calculate:

, (9.446)

(9.447)

energy conservation (9.448)

We use Eqs. (9.462) and (9.463) to determine Aw(z) and A2w(z). Moreover, if Aw(0) is real and A2w(0) = 0,
the solution takes the form

, (9.449)

. (9.450)

Given real but otherwise arbitrary Aw(0) and A2w(0) we can find the point z0 such that A2w(z0) = 0.
Equations 9.449 and 9.450 are symmetrical solutions about the point z0 using Aw(z0). Consequently a real
but otherwise arbitrary starting value for the harmonic may be treated by solving the transendental equations
for z0.

, (9.451)

. (9.452)

If A2w(0) has a component that is imaginary it will not be amplified and only Re[A2w(0)] need be considered.
The detuning factor reduces the coupling coefficient. When the frequency doubling is broken up into

several intervals using separate calls to double, the cumulative effect of detuning may be accomplished
by setting zstart to the length of previous passes through the doubler.

The phase factor is based on Dk. The cumulative effect of this phase factor, taken alone, is:

(9.453)

Detuning in the closed form solution be included approximately for significant detuning values by
neglecting the leading phase term to provide a strictly real form of k:
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. (9.454)

The detailed solution of the differential solution in double/steps is required to treat smaller detuining
values that would generally be appropriate for realistic cases.

For A2w(0) = 0 and no detuning, the solution for harmonic amplification is

. (9.455)

An approximate expression for gain length for second harmonic generation is

gain length ≈ , (9.456)

where the wavelength is expressed in centimeters and Iw is the incident intensity in watts/cm2 of the pump.
For Iw = 10Mw/cm2 and k = 10-4, the gain length is 0.1 cm.

9.13 Transient Raman Kinetics  
Very high power, short pulse laser beams are important for certain types of laser fusion. The Omega

laser being developed by the Laboratory for Laser Energetics, University of Rochester employs many beams
at power levels of approximately 2 gigawatt per square cm (as of 1992, Omega upgrade). Propagation of
these beam through air may induce rotational Raman scattering to form a Stokes beam, which given
sufficient distance for amplification, may significantly deplete the initial beam. For high power beams, the
Stokes beam may grow quite quickly and, as a consequence, the beam quality of the Stokes may be
extremely poor, making it essentially useless.

To facilitate design and analysis of these high power systems, it is very helpful to have an accurate
computer model so that different configurations and laser inputs can be easily studied. We must resort to a
computer model rather than rely entirely on analytical solutions because analytical descriptions in the
literature primarily address relatively weak amplification such that the Raman conversion takes place a
distances comparable to a Fresnel number of 1 or less.

A single leg of the Omega laser has a diameter of approximately 30 cm and may see significant Raman
conversion in over the range of between 20 and 40 meters. Some typical parameters are listed in Table 9.1.
At 0.351μ the Fresnel number is on the order of 2,000 or more. ]

Table. 9.1. Typical parameters for a high power laser exhibiting Raman conversion effects.

Parameter Value
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To model this system, we have several difficult issues of physics:
• transient Raman equations rather than the simpler, steady-state equations,
• correct treatment of noise to generate the Stokes beam,
• representation of the wide angle radiation typical of Stokes light in high gain, short distance 

configurations.
We wish to have our model be efficient which means we must pay careful attention to the size of the

arrays required and the number of axial steps. The basic equations for the evolution of the radiation and the
state of the medium (Raymer adn Mostowski [15], Raymer and L. A. Westling, [16]) are

, (9.457)

, (9.458)

, (9.459)

where El and Es are the complex amplitude fields of the laser pump and Stokes radiations; Q is the complex
amplitude state of the medium excitation, kl and ks are the wave numbers; Γ is the medium linewidth; k1,
k2, and k3 are coupling coefficients; and F is the random force due to quantum effects. The coefficients k2
and k3 are related by,

. (9.460)

Split step methods are invoked to solve these equations. In the split step method, we break the coupled
equations into a series of elementary linear differential equations and solve the full set for each axial step,
See Section 3.4. The effects of diffraction are included by solving,

cm-3

0.1447

6.76 cm/terrawatt

cm

cm
energy per pulse 500 J
beam diameter 30 cm
pulse length 100 to 500 picoseconds

Table. 9.1. Typical parameters for a high power laser exhibiting Raman conversion effects. (Continued)

Parameter Value
N 2.6856 19×10
k3

g1

λL 3.511 5–×10
λS 3.5204 5–×10
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 diffraction for , (9.461)

diffraction for . (9.462)

We shall solve these diffraction equations with FFT techniques by preference. In our application of
particular interest, diffraction propagation does not strongly effect El but does influence the Stokes beam
because of its high spatial frequency components.

The kinetics equations to be solved are

, (9.463)

, (9.464)

, (9.465)

where El and Es are the laser and Stokes complex amplitudes, Q is the medium complex state, the k's are
gain coefficients, Γ is the Raman line width, and F is a random force due to collisions.

Let us now consider the solution of Eq. (9.465). The second term on the right hand side represents the
finite time response of the medium. The first term represents stimulated Raman gain. This term is driven by
the product of the two optical fields and is not present in the absence of the driving laser pump. The third
term on the right is due to collisional effects in the air and this force is always present irrespective of the
laser field.

The collisional force is delta correlated in space and time and this leads to scattering of the laser field
into a Stokes field which radiates into 4π steradians. F is delta-correlated in time and space

. (9.466)

Let us consider that Q consists of two components: a stochastic component due to F and a stimulated
Raman component due to El and Es,

, (9.467)

where Qraman is driven by stimulated Raman and Qss is the stochastic component induced by collisional
forces.

Since F is a statistically stationary, Qss is statistically stationary. However, unlike F, Q varies with finite
temporal correlation as determined by Γ.

To understand the effect of Qss, let us first completely neglect the effect of stimulated Raman. Consider
Fig. 9.8, where Qss is shown as a random field of complex numbers. The random field is delta correlated
spatially but varies temporally at the rate Γ. If a weak laser field (one weak enough to have negligible Raman
amplification) passes through the field of scattering sites, spontaneous Raman will be generated. Because
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of the delta correlation of Q, the Stokes light will scatter in all directions. However, only the Stokes radiation
that travels approximately in the forward direction will be amplified. Considering only the forward scattered
light in some small solid angle Δω, the Stokes noise power will increase linearly due to spontaneous Raman.
This takes the form

, (9.468)

where g2 is a coefficient representing the spontaneous emission growth. We may construct a contribution to
the Stokes complex amplitude Es which represents the appropriate noise accumulated in a step of length Δz

, (9.469)

where  is a unit variance random phasor with normally distributed magnitude. The stochastic
variable  is readily constructed to be unit variance and spatially delta correlated. Since the field

 represents the stochastic aspect of Q, it changes such that the temporal correlation is 1/G. To
represent this temporal behavior we shall add a small random component at each step in time. This takes the
form,

, (9.470)

where  is a new unit-variance, normally distributed random phasor. Eq. (9.470) gives a random
field which evolves in time at the appropriate rate.

Es is also driven by the stimulated Raman effect. In solving for the effect of the stimulated Raman, we
neglect the spontaneous Raman effects. Es is driven by the time-integrated effect of the laser field. This takes
the form,

Fig. 9.8. A laser beam incident from the left is scattered by the medium field Qss which is delta correlated spatially 
and which scatters light into steradians. In the scattering due to spontaneous Raman effects obeys Beer's Law. Only 
the light which is scattered in the forward direction contributes to the amplified Stokes.
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amplification of Stokes, (9.471a)

 evolving sum, (9.471b)

energy gain for Stokes, (9.471c)

energy loss from pump. (9.471d)

We may also define g1 = 2k1k2/G as the steady-state power gain coefficient to be found when considering
Eq. (9.471a) and Eq. (9.471b). In order to minimize the number of axial samples, GLAD takes advantage
of the nearly (but not exactly) exponential behavior of Q, as shown in Fig. 9.9. To achieve pump depletion,
we simple calculate the energy loss due to spontaneous emission (into 4π steradians, not just ΔΩ) and due
to stimulated Raman amplification. GLAD employs photon conserving algorithms in the region of strong
pump depletion. 

We have left up to now the question of the appropriate value of for ΔΩ. For a uniform intensity pump
beam, this value depends on the ratio of the diameter of the laser beam to the length. Consider Fig. 9.10, we
have shown an initial plane, a propagation distance of El, and a final plane of observations. The path length
has been divided into gain-lengths. For a beam having gigawatts of power per square centimeter, we have
one or two gain lengths per meter of length. We assume that the most of the spontaneous Stokes growth
occurs at the beginning of the propagation in the first gain-length. Of course spontaneous Stokes growth
occurs at all axial regions, but the upstream noise experiences the greatest Raman amplification and is,
therefore, the most important. The limits of the aperture define the maximum angles which can contribute
to the Stokes beam at the end of the propagation. Alternately, we could consider the angles as they originate
from the start of the propagation. Rays which leave the beam before the last one or two gain lengths do not

Fig. 9.9. Semi-exponential growth of Stokes light in the spontaneous regime. Shown schematically.

z∂
∂ Es i– k2Q*El=

Q* x y z t Δt+, , ,( ) ik1El
* x y z t, , ,( )Es x y z t, , ,( )Δt e ΓΔt– Q* x y z t, , ,( )+=

ΔH z Δz+( ) E z Δz+( ) 2 E z( ) 2–=

El z Δz+ tn,( ) El z tn,( ) 1
λs
λl
----- ΔH

El z( ) 2------------------–=
Jump to: ,  Commands  Examples



188 GLAD Theory Manual
receive enough amplification to remove much power from the laser beam, as indicated in Fig. 9.11. In
practice we should include angles somewhat larger than the diameter-to-length ratio to get the correct pump
depletion and the Stokes power scattered well outside the diameter of the laser beam.  

The diameter-to-length ratio gives a good value for the maximum angle only if the laser beam is uniform
across the aperture. If there are hot spots in the laser beam or even relatively weak intensity peaks, very
strong hot spots will be induced into the Stokes beam because of the very strong amplification. Since one
hot spot will generally dominate, the effective width of the Stokes beam may be much less than the full

Fig. 9.10. The propagation length may be considered to be divided into gain-lengths. A strong beam will have many 
gain lengths. While spontaneous Raman noise is generated at all points in the beam, the noise from the first gain 
length has the highest stimulated gain and is, therefore, most important. Most of the power gain, however, occurs in 
the final gain length.

Fig. 9.11. The Stokes noise is amplified by the stimulated Raman gain, shown as an exponentially increasing function 
in the upper figure. If we were to look into the beam path (neglecting safety considerations and the fact that we can 
not see UV light), we would see the most distant noise as being the brightest and noise generated closer to the eye as 
being of negligible importance.
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aperture. This will result in considerable narrowing of the angles which must be modeled and,
correspondingly, a substantial increase in speckle size. 

To better understand the concept of the effective source, we can estimate its value. For collimated
geometry and weak pump depletion, we have the noise growing as

, (9.472)

and the stimulated amplification as

, (9.473)

where g1 is the transient stimulated Raman gain, which depends on the laser temporal waveform and
coherence. Ignoring diffraction effects, the solution is

, (9.474)

which has the solution,

. (9.475)

This equation shows that the Stokes irradiance is closely approximated by . We can always
consider the effective starting noise to be

. (9.476)

Or more generally,

, (9.477)

where A is the area of the beam. It is interesting to note that the effective starting noise is independent of the
laser pump irradiance. The only variable is the geometrical factor A/4pL2, since both gt and g2 are
fundamental properties of the atmosphere (actually gt also varies with the laser temporal waveform and
coherence).

The Raman threshold (by the usual conventions) is

, (9.478)

from which we conclude that the exponent of the amplification at threshold is

 (exponent of amplification at threshold). (9.479)
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Clearly the amplification necessary to achieve threshold in a fixed geometry varies with laser pump
intensity. If we include the length of the beam path as a variable we have,

. (9.480)

Interestingly, the solution to this transcendental equation gives a value for the amplification exponent at
threshold which depends only on the geometry and the spontaneous Raman gain coefficient g2.

From these calculations we can readily see that there is an effective source which due to the spontaneous
emission and the stimulated amplification. Note that slight irregularities in  will cause large variations in
amplification because they occur in the exponent. The amplified effective source will appear to be much
smaller than the diameter of the beam given a single weak hot spot in the laser which is brighter than all
other spots.

Since  scatters in all directions, the usual split-step method is called into question, because the
diffraction propagation methods are suitable only for near-diffraction-limited beams. With a numerical array
and sample spacing of Δx and Δy, the maximum solid angle which can be represented is DW = l2/(DxDy).
For a large diameter beam and short propagation length, the angle represented by the diameter-to-length
ratio may be many times larger than the angle which can be represented by an array of reasonable size, as
illustrated in Fig. 9.12. In the more usual case, where hot spots dominate, the speckle size is much larger, as
indicated in Fig. 9.13, and may be resolved more easily.

We shall limit the angular subtense of  by deleting the high spatial frequency components of F to
introduce only angles of  which fit within the solid angle ΔΩ..  

9.14 Parasitic Transverse Raman In KDP for High Power Lasers
KDP is a common nonlinear optic material used to create higher harmonics and other nonlinear effects

including Raman. In particular, such plates may be used in inertial confinement systems to achieve
smoothing of the irradiance on the target. See Han, et. al [20]. In a KDP plate, there can be sufficient width
to have a large number of gain lengths in the transverse direction. The Raman light may reflect from the
edges. The reflection may be reduced by anti-reflection coating however the birefringence of KDP means

Fig. 9.12. A laser beam passing through a medium with a nonlinear optic response may generate Stokes noise as 
indicated. Some of the random noise propagates sideways and therefore developes a significant of length of Raman 
gain.
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that an anti-reflection coating designed for a specific index of refraction will not be perfect for both indices
of refraction that are present for general orientation. We also expect Rayleigh scattering. With sufficient gain
both the Rayleigh scattering and multiple reflections may be overcome. Ultimately the transverse gain may
be limited by finite temporal pulse length. Figure 9.13 illustrates a laser beam entering a plate of material
such as KDP that will create Raman light through the nonlinear process. Initially the light is created as
random speckle that propagates in all directions (4p sr).

A typical KDP plate that might be used in inertial confinement fusion to generate spectral smoothing of
a laser beam at the target plane might be 40 × 40 cm with a thickness of 1 to 2 cm. The speckled light in this
type of geometry never resolves into a coherent beam. However, the high Raman gain can be a major factor
in the transverse direction because the very high laser intensities create extremely high Raman gain. Light
passing transversely though the crystal can grow to such magnitude that it depletes the laser light
significantly and/or creates material damage.

The spontaneous emission intensity is primarily determined from initial pump intensity an initial point
in terms of pump intensity at point (x0,y0) is considered as it is viewed from some point (x,y)

Noise patch as viewed from , (9.481)

General form (9.482)

Simplified form (9.483)

Ip is the pump intensity. (9.483a)

IR is the Raman intensity. (9.483b)

R non-subscripted is the reflectivity of the edges. (9.483c)

Fig. 9.13. A laser beam passing through a medium with a nonlinear optic response may generate Stokes noise as 
indicated. Some of the random noise propagates sideways and therefore develops a significant of length of Raman 
gain.
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W is the solid angle in steradians of the noise patch viewed from (x,y). (9.483d)

g1 is the coefficient for stimulated Raman gain. 1/g1 is approximately the thickness of noise patch.(9.483e)

g2 is the coefficient for spontaneous random noise due to a laser beam acting as pump. (9.483f)

n subscripted is the number of edges contacted by Raman beam. (9.483g)

n non-subscripted is the index of refraction, average value used for gain calculations. (9.483h)

a is the Rayleigh scattering coefficient. (9.483i)

c is the speed of light in vacuum. (9.483j)

L is the length along the pumped regions of the path. (9.483k)

The major parts of Eq. 9.482 may be considered separately.

Amplification  across the laser beam as well as Rayleigh scattering. (9.484a)

Simplified form of amplification , where L is the length of the illumination. (9.484b)

The main source of inaccuracy in amplification is the Raman stimulated gain coefficient g1 which varies in
documents by as much as a factor of 2 for KDP.

Edge reflectivity product Rn. R can vary from 10-5 to 10-3 due to limitations of the antireflection coating 
applied to a birefringent material and scuffing that may occur on edges and surface. Uncertainty for 
transmission through two edges could lead to uncertainty of as much as much as 104. (9.484c)

Spontaneous emission noise with g2 spontaneous gain and g1 stimulated gain . (9.484d)

The primary uncertainty of the spontaneous emission noise is g2, for which a reliable experimental value
has not yet been identified. Note in Sect. 9.14.3 that noise calculate from a closer image may sometimes
yield a higher Raman intensity and the highest value should be used in determining the worst case intensity.

If both faces of the KDP plate are antireflection coated, the calculation of the geometric solid angle DW
is simply the width × length of the KDP plate divided by the distance to the starting point of the spontaneous
emission. If the faces are left bare, the light of speckle will fill 2*Brewsters Angle. So what might be about
one degree of angle for the plate thickness divided by length increases to about 80 degrees. So multiply by
about 80 if the faces are not antireflection coated.

Many relevant material properties may be found in Guo et. al. [21] and Eimerl [22].
The application of Eq. 9.482 is a simple multiplication of terms. However the uncertainty due to the

edge reflectivity, spontaneous emission coefficient, and stimulated emission coefficient lead to many orders
of magnitude uncertainty.

e
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9.14.1 Edge reflection
A complicating factor is the light that reflects off the edge travels back through the plate. Even with

good anti-reflection treatment of the edges, the very high Raman gain may result in the transverse Raman
gain going throughout the life of the inertial confinement pulse of a few nanoseconds to several nanoseconds
For a 40 × 40 cm plate, the time for light to cross is approximately 2 ns, so pulses of several nanoseconds
will experience edge reflections. Long pulses will experience many reflections. A method originally
developed in GLAD for modeling reflecting wall waveguides illustrated in Example 77, may be used to
facilitate understanding. Rather than think of edge reflections, we can think that the plate is placed in an
array of images of plates—each a reflection. We identify the various reflections by (n,m) address with n
applying to the horizontal displacement and m to the vertical. Address (0,0) is, of course, the main beam.
See below for an illustration of reflections by edges for a hypothetical triangle Fig. 9.14.a and a round beam
Fig. 9.14b. 

9.14.2 Illumination of a point by Raman speckle
Unlike coherent propagation where a beam may be numerically propagated through an optical system,

in the case of uncorrelated random noise, the beam cannot not be propagated by the various diffraction
propagation algorithms. Instead a radiometric approach is needed where for a given point is illuminated by
all emitting sources. In the most general sense, every point is illuminated by every other point with Raman
amplification between the points.

Unlike coherent propagation, generally there are no algorithms to speed up the calculations. However,
there are significant simplifications in the specific case of inertial confinement fusion. Among these are:

• Finite pulse length.
• Symmetry in the rectangular nature of the edges creates some structure in the reflected light.
• We can concentrate on two main issues: worst case damage and worst case depletion of the main laser 

beam.

Fig. 9.14.a. Edge reflections may be treated as images. 
Actual object is in the center with thick boundary. 
Images are on all sides.

Fig. 9.14b. A square plate with a circular beam and 
images created by edge reflections. For a uniformly 
illuminated circular beam, the parity of the images is not 
of concern.
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9.14.2.1 Choice of observation point
First consider the center point in the unfolded system shown in Fig. 9.15. At a time of 1.375

nanoseconds (ns) light at the very start of the pulse has had time to travel about 27.5 cm. If we choose a
point at the center of the beam as our observation point and draw a circle of 27.5 cm radius, we see all of
the direct light of 15 cm is included and a patch of 2.5 cm width from each of the four nearest reflected
neighbors. Let us further assume that our gain per cm is 1.0. So the patches and the patches on the reflected
beams and the perimeter of the direct beam travel about 15 cm across the illuminated beam giving us an
amplification of e15. Now consider Fig. 9.16 where the observation point is at the left side or the main beam.
The light is traveling 30 cm from the right side so has an amplification of e30. The offset observation has
greater amplification than the center observation point of Fig. 9.15 by a factor of e30/e15 = e15 ® 3.27 × 106.
So the observation point for worst case parasitic Raman is at the edge of the beam to have maximum
amplification across the beam diameter.

For very short pulses such that reflected light is not significant, any observation point on the perimeter
will have the same amplification along the diameter. However for longer pulses such that reflected light is
important the observations are best placed at the four orthogonal points: left, right, top and bottom. This is
because light that travels diagonally has to pass through two reflections to return for every one reflection for
the left, right, top, and bottom directions. Figure. 9.16 shows four small tick marks for the four worst case
observation points. In the remainder of this section, we will just use the left perimeter observation point.

9.14.3 Effect of longer pulses
Figure 9.17 shows the effect of amplification from the main beam and two reflections. We show paths

P1, P2, and P3 starting from the right edges of the main beam, first reflection, second reflection. In fact
spontaneous Raman is generated along all parts of the paths where there is laser pump illuminations.
However with strong amplification such as our assumption of e30, only the first gain length need be
considered so Fig. 9.17 indicates only the relevant right hand sides. In the bottom part of Fig. 9.17, the
natural logarithm of the Raman intensity Ln(Ir) is indicated. We have also drawn a loss due to the
transmission through the edges. We have assumed the loss is R = e-10 ® 4.5 × 10-5. This number presumes
an excellent anti-reflection coating—particularly for a birefringent material such as KDP.

Using round numbers of gain at 30 and the edge transmission of -10 makes our math easy. We see in the
lower part of Fig. 9.17 that working from left to right:

• Path P1 has natural log of amplification of 30.
• Path P2 has natural log of amplification of 30 - 10 + 30 = 50.
• Path P3 has natural log of amplification of 30 - 10 + 30 - 10 + 30 = 70.
Generally we need only consider the longest path so usually we would ignore P1 and P2. The irradiances

of the paths do, of course, add at the observation paths but with a difference of 30 - 10 = 20 in natural log
P1 << P2 << P3. However at the time into the pulse ends, on the left side of the beam or image of the beam,
there may not enough gain to offset the subsequent attenuation of e-10. In Fig. 9.18 the path of P3 results in
weaker irradiance at the observation point, so we should use P2 to find the strongest Raman gain.    

9.14.4 Testing the Parasitic Raman Model
The method used by Han [20] is basically correct. A plate of the size to be used in the ultimate system

is best. Similar lase pulse diameter is best. Significantly smaller plates, smaller beams, or lower power will
Jump to: ,  Commands  Examples



195
not have the correct mix of spontaneous and stimulated Raman or the appropriate behavior of multiple
reflections from the edges.

Lower power tests will be good to determine the spontaneous emission coefficient. The edge reflectivity
can be measured separately, but a prop with similar divergence to that of the ultimate system may respond
more correctly to the presence of scuffing of the corners at the edge of the plate. A perfect collimated beam
as probe may not “see” the corners correctly.

Placing a power detector along one physical edge will generally be close enough to correspond to the
edge of the power distribution. We will need to add an extra R term included for either Eq. (9.481) or Eq.
(9.501) to allow for the loss in exiting the plate. For very low pulse power such that there is little

Fig. 9.15.  Taking the center of cell (0,0) as the observation point, there are four contributing patches—each about 
20 cm long, as indicated by the thick lines.

Fig. 9.16.  Similar to Fig. 9.15 except the left edge of cell (0,0) is the observation point. The primary Raman gain is 
30 cm long as indicated by the thick line.
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amplification, the equations should be adjusted to sum over more area. Additional power measurements
should be taken for the laser pump. Generally we will be looking for power out the edge versus time
according to the curves in Fig. 9.17. In this simple analysis, a square temporal pulse was assumed, but a
more realistic temporal pulse shape can be accomodated in either Eq. (9.481) or Eq. (9.501).

9.14.5 Tensor Considerations
Consider a 3-tensor that is insensitive to an x-rotation.

(9.485)

(9.486)

For uni-axial crystal with polar azis in z-direction (9.487)

Fig. 9.17. Light from the beam and from multiple images may arive at the observation point with different intensity. 
Path P1 comes from the far side of the actual beam (0,0). Path P2 comes from the far side of first image (1,0) and 
generates Stokes noise as indicated. Path P3 comes from the far side of the second image (2,0). Assuming 
amplification of e30 across the diameter of the beam and e-10 at each edge reflection we find the natural log of 
amplification above the spontaneous emission is 30 for P1, 50 for P2, and 70 for P3.
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For beam in the +x direction  (9.488)

For beam in the +z direction  (9.489)

For a beam in the direction (9.490)

Fig. 9.18. Spontaneous emission from the farthest point is not always of higher intensity than emission from closer 
regions.

At the time of 4.0 ns into the pulse at the observation point, light from the near side of the 2nd image (2,0) travels 
along path P3 and reaches the left side of the 30 cm laser beam with natural log gains drawn with the dashed line. 
This light began at time = 0 ns. However the Raman noise does not have enough gain length along P3 in the 2nd 
image to overcome the loss due to the antireflection coating. Light at 3.0 ns at the observation point, which began at 
time = 1 ns into the pulse arrives from the far side of the 1st image (1,0) and has a full diameter of gain length so it 
ends up at higher intensity, as shown in the solid line P2 in the lower figure. 
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For a beam in the direction (9.491)

(9.492)

(9.493)

(9.494)

(9.495)

(9.496)

9.15 Two-photon absorption and optical limiting 
The attenuation of a beam or pulse through a two-photon absorbing medium may be represented by

(9.497)

a represents the single photon (linear) contribution to absorption and b represents the nonlinear component.
See Bechtel and Smith[17]. Two-photon absorption is also referred to as optical limiting and is of use for
fast reacting optical shutters. See ex113.inp.

9.16 Coherent gain model  
The rate equation approximation treatment of Sect. 9.3 assumes that the optical field is responding

slowly with respect to the time constant of population inversion decay or, correspondingly, the bandwidth
of the optical signal is less than the spectral bandwidth of the gain. The effect of spectral line width f(n) in
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Eq. (9.55) is included only in ad hoc fashion to provide for reduced gain on off-center longitudinal modes.
Ideally, the mode beating of both longitudinal and transverse modes would be incorporated into the same
fundamental description. Also, the rate equation approximation, by itself, can not explain the formation of
longitudinal modes. Nor can a description of the resonant cavity. Siegman in Sect. 11.3 of Lasers [18] notes
that there should be zero round trip phase, but his description assumes an externally incident field as
indicated in Fig. 11.9. For a stand alone amplifying medium in a cavity, there is no external incident field to
constrain the complex amplitude into discrete longitudinal modes. Rate equation gain, even with a spectral
line width function of the form f(n) of Eq. (9.55), yields gain on all regions of the spectrum under the spectral
line width. Neither the cavity nor rate equation gain give a basis for narrow longitudinal modes underneath
the spectral line width curve. We need a resonant behavior of the gain which does not exist in the intensity
amplification model of Eq. (9.12) under the rate equation approximation, but is provided by the more
advanced resonant dipole model.

An additional failing of the rate equation approximation is that it predicts that there is no direct limit on
the rate at which stimulated emission may take place. The solution for saturated gain Eq. (9.65) indicates
that nearly all of the population inversion may be extracted essentially instantaneously by an extremely
powerful optical pulse. Such an interaction would have the time variation of population inversion and the
corresponding change in the optical pulse have a temporal spectrum wider than the spectral line widths of
the gain—a physically impossible condition.

An excellent treatment of coherent pulse propagation can be found in Chap. 13, Sargent, Scully, and
Lamb[17]. We will follow this development and employ the slowly varying envelope approximation SVEA.
The electric field E(z,t) may be expressed in terms of the complex field envelope E(z,t):

(9.498)

Corresponding to Eq. (9.498), we have the macroscopic polarization P(z,t) and the slowly varying complex
polarization envelope P(z,t):

(9.499)

From Sargent et al. [17], the complex optical field self-consistency equation, in a stationary coordinate
system is

, (9.500)

In the moving coordinate system used in GLAD:

. (9.501)

The population inversion D is a scalar value

, (9.502)

with raa and rbb being the upper and lower population density matrix elements.
D varies as
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, (9.503)

simplified somewhat from [19] to concentrate on strong optical interactions. Equation (9.503) includes the
population matrix element proportional to the complex polarization rba. Note that rba = rab*. The complex
polarization matrix element is:

. (9.504)

Combining Eq. (9.503) with Eq. (9.504) we have

(9.505)

The polarization of a homogeneously broadened medium is given by,

(9.506)

From Eq. (9.499) and considering only the positive frequency components,

. (9.507)

With Eq. (9.504)

, (9.508)

from Eq. (13.16) [19] with correction of a typographical error. The equation of motion in a moving
coordinate system is

, where . (9.509)

Introducing the cross section s and removing the bulk absorption loss k:

. (9.510)

We can define a moving average , a complex number:

. (9.511)

Rewriting Eq. (9.510) with 
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. (9.512)

Rewriting Eq. (9.505) with  we have

, (9.513)

where R is the pumping rate. Considering only the pumping and decay terms from Eq. (9.513)

. (9.514)

The steady state solution of Eq. (9.514) is

. (9.515)

We can find the pumping solution independent of stimulated emission:

,

. (9.516)

In numerical calculation with discrete steps it is necessary to keep track of the complex running sum of the
electric-field-weighted, and time-decaying population inversion :

. (9.517)

Equations (9.512)-(9.517) are the necessary set needed for numerical calculation of coherent pulse
propagation.

In the limit where  is slowly varying with respect to g

, (9.518)

and

. (9.519)

Since  is strictly real, it introduces no phase shift to  and Eq. (9.519) can be rewritten in
terms of  and

, (9.520)

and Eq. (9.513) becomes

, (9.521)
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consistent with the rate equation approximation expressions of Eq. (9.51) and Eq. (9.52). Checking energy
conservation we have:

, (9.522)

, (9.523)

showing that the energy gained in the optical field is equal to the energy lost from the population inversion.

9.17 Passive Q-switching with a saturable absorber
Q-switched lasers often imply a saturable absorber to form a passive switch. Cr4+ is a common choice

of medium[23–25]. This material exhibits ground state absorption (GSA) with cross section sgs. Initially a
population inversion is formed as laser light is absorbed, but as the ground state is depleted the absorption
line “bleaches” and become transparent allowing the laser to Q-switch. In the case of Cr4+, there is also
excited state absorption (ESA) with cross section ses, which adds a second path for laser absorption,
preventing complete bleaching.

Figure 9.19 illustrates the energy levels of Cr4+. The total population of all levels is assumed to be n0: 

. (9.524)

Since Level 3 decays very rapidly to Level 2 and Level 4 decays very rapidly, nonradiatively to Level 2:

 and . (9.525)

Fig. 9.19. Four levels of a Cr4+saturable absorber. The primary mechanism for laser absorption is the transition from 
Level 1 to Level 3—ground state absorption. It is assumed that Level 3 decays very quickly to Level 2. Excited state 
absorption occurs between Level 2 to Level 4. It is assumed that Level 4 decays by some non-radiative process.
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Consequently, both ground state absorption and excited state absorption are essentially one-way: absorption
only (without re-radiation). Note that these non-radiative transfers mean that there is not energy
conservation between the optical field and the population inversion. Consequently the total energy in optical
field and population is not a constant, and the Frantz-Nodvik method may not be applied.

From Eq. (9.525) we have essentially all atoms in either Level 1 or Level 2.

. (9.526)

Stimulated absorption takes place between Levels 1 and 3 (GSA), but  so the population inversion is

. (9.527)

For stimulated absorption between Levels 2 and 4 (ESA) but  so the population inversion is

. (9.528)

The change in optical field considering both GSA and ESA we have

. (9.529)

Taking into account Eq. (9.526) we have

, (9.530)

. (9.531)

as the response of the saturable absorber in a single pass context. The change in n1 with optical irradiance is

, (9.532)

where g is the inversion reduction factor[25]. Variables which must be specified include: n0, sgs, ses, g, and
length L. t2 is the decay of level 2—about 4ms for CR4+.

As implemented in a numerical code with discrete changes Eqs. (9.5311) and (9.532), become

, (9.533)

. (9.534)

The integration length in Eq. (9.533) will be the length of the saturable absorber component. The integration
time in Eq. (9.534) will generally be half the total round trip time for saturable absorber used in a double
pass configuration.

Koechner and Bass[26] describe a saturation fluence Es. The fluence in the saturable absorber required
for complete inversion is:

 such that . (9.535)
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giving the saturation fluence as,

. (9.536)
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10. Component Specification

GLAD allows modeling of diverse forms of mirrors, lenses, and apertures.

10.1 Mirrors and Lenses
GLAD models a mirror by its radius (or focal length) using the mirror command. If the
mirror/global command is used the component will be modeled using exact rays to calculate OPD
values and global positioning, as discussed in Chap. 11. The quadratic phase is

, (10.1)

where  is the complex transmission function, k = the wave number, f is the mirror radius.
The sign convention for focal length and radius are different. The focal length is defined with respect to

the element’s effect on the beam:
causes the light to be more convergent,
causes the light to be more divergent.

The sign convention of the mirror radius is defined by the position of the center of curvature with respect to
the mirror vertex, in the vertex coordinate system. Convex mirrors have positive radii. Concave mirrors
have negative radii. The global coordinate command, vertex/rotate, rotates the vertex coordinate
system with respect to the global system. It is possible to rotate a concave mirror so that the beam hits the
backside, causing the element to have the effect of a convex mirror. The user should exercise care in laying
out elements with the vertex/rotate command to be sure the correct sign conventions are used.
Remembering that these conventions are defined in the vertex coordinate system:

center of curvature to right of vertex,
center of curvature to left of vertex.

Idealized lenses are defined similarly to paraxial mirrors, using the lens command. Detailed ray tracing,
discussed in Chap. 11, is treated with the lensgroup command. The optical power of the lens is defined
by the focal length.

For either lenses or mirrors the phase imposed by the element may be applied as a change to the complex
amplitude distribution or as a change to the phase bias. The choice is determined by GLAD to achieve the
minimum phase curvature that exists in the complex amplitude to minimize sampling requirements.

Lenses and mirrors may be defined with spherical, cylindrical, or toroidal elements. In the paraxial
approximation, these elements are treated only to second order, so no spherical aberration is imposed. Phase
bias is represented to second order with an  and . The command abr/focus may be used to add
phase curvature to the complex amplitude distribution without changing the phase bias. abr/sph may be
used to add spherical aberration.

As mentioned above, the mirror/global command models conic mirrors using exact OPD
calculations. The phase bias is treated as an exact toric phase surface with radii,  and .

t x y,( ) e
j k
2f----- x2 y2+( )–

=

t x y,( )

f 0>
f 0<

r 0>
r 0<

Rx Ry

Rx Ry
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10.2 Tilts and Decenters
Tilts and decenters are divided to fine scale and large scale. Fine scale tilts and decenters may be treated

by the abr/tilt and either the shift or rescale/shift commands. These commands may be used
for slight misalignments of an optical system or resonator. abr/tilt directly changes the phase of the
distribution in the complex amplitude distribution represented in the computer array. shift or
rescale/shift implements translations directly in the complex amplitude array. Large scale rotations
and translations used for defining a folded configuration may be defined with the global and vertex
commands in the next chapter.

10.3 Apertures and Obscuration
Apertures and obscurations may be modeled with the clap and obs commands. These elements are

applied normal to the propagation direction of the beam. A general obscuration may be applied with the
obs/gen command where the coordinates of the vertices of the obscuration are read from a file.

10.4 Complex Systems and GRIN Media
Propagation through a complex system or through a gradient refractive index (GRIN) medium can be

represented by an ABCD matrix. An equivalent, elementary optical system can be found for any ABCD
matrix. Let the properties of the first optical space be indicated by the subscript 1 and the properties of the
second space by the subscript 2. It is assumed that the ABCD matrix consists of four elementary operations:
change of index, change of magnification, thin lens of optical power φ, and a translation of distance t: 

, (10.2)

, , , . (10.3)

The four elementary operations, going from left to right are index of refraction change, optical power,
magnification, and propagation length. These elementary operations are implemented in GLAD by internal
calls to wavelength, lens, magnify, and prop. 

Equation (10.2) gives the correct optical properties including the correct diffraction length. However,
as Eq. (10.2) is written, it does not maintain the correct physical which can cause confusion as the system
layout will not have exactly the correct positions. We can achieve the same optical properties from the
ABCD matrix and maintain correct physical length by adding an extra magnification step. Knowing both
the net ABCD matrix and the physical length tp, we can have elementary operations match both the ABCD
and the physical length. Define a special magnification

, (10.4)

and rewrite Eq. (10.2) as

A B
C D

1 t
0 1

M 0
0 1 M⁄

1 0
φ n2⁄– 1

1 0
0 n1 n2⁄

=

t B
D----= M AD BC–

D----------------------= 1
f---

φ
n2
----- C AD BC–( )

D-------------------------------– CM–= = =
n1
n2
----- AD BC–=

Mp t tp⁄=
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, (10.5)

. (10.6)

Numerically magnification simply requires a change in the units, so the extra magnification step for Mp adds
negligible time.

One could choose a different set of four primitive operations, for example, by permuting the order of
the matrices, and develop the method in similar fashion to that done here. In particular see Sect. 10.4.2 for
a backward version so that Eq. (10.2) may be used for a forward pass in a resonator and Eq. (10.10).
Siegman describes a generalized diffraction operator using these ABCD matrices explicitly—an alternate
approach. The elementary operator method is preferred because of the physical insight to be derived and
because the simple operations already exist in most propagation codes. The elementary operations are
illustrated in Fig. 10.1.

Equation (10.2) may be interpreted as finding the image of the original distribution in the local optical
space, and completing the propagation to the desired plane. There are no diffraction propagation effects in
transforming the object space distribution to the local image —only magnification and radius change. All
diffraction propagation effects will occur in the single propagation step.

The first three steps are quite simple to execute. In numerical implementation, a magnification change
alters the size of the sample spacing, , and the reference radius (if one is used), .
The refractive index change does not change the wavefront error of the complex amplitude distribution but
does change the reference radius to . The thin lens changes the radius of curvature to

Fig. 10.1. Propagation through a complex paraxial optical system can be represented by an equivalent elementary 
optical system.
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. (10.7)

The last step is a propagation of t in general, noncollimated geometry. Only this step requires any
substantial computation time. In general, noncollimated propagation, the beam may be referenced either to
a reference plane or a reference sphere—whichever minimizes the quadratic phase error in the complex
amplitude distribution.

10.4.1 Two-Lens, alternate form
If the element D is too small—due to the original distribution being projected to infinity in image

space—an alternate form provides better numerical accuracy, as shown in Fig. 10.2.

, (10.8)

, , , . (10.9)

10.4.2 Backward alternate form
The backward form is the reverse operation from Eq. (10.2) is

, (10.10)

Fig. 10.2. Alternate form of equivalent elementary optical system more suited to having the image of the distribution 
projected to infinity.
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, , , . (10.11)

As with Eqs. (10.4)–(10.6) for the standard forward factorization, we can match the physical length tp by
using magnification Mp as defined in Eq. (10.3). Our modified elementary operations for the backward
factorization are therefore:

. (10.12)

10.5 Anamorphic ABCD matrices
The optical system may not be rotationally symmetric. If there is bilateral symmetry, the paraxial

behavior may be described by two matrices for the two orientations,

, (10.13)

. (10.14)

We require isotropic media and therefore constrain the refractive indices to be the same in the two
directions. It is desirable to put the equations for the two directions in a form which has the same optical
propagation thickness. We can propagate  for both directions by pre- and post-multiplying the y-matrix
for distance propagation

 where , (10.15)

such that the full y-matrix may be written in terms of 

. (10.16)

This allows propagation of the same distance for both x- and y-directions by pre-and postmultiplying
by a magnification operator.
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11. Global Coordinate System

This chapter describes modeling components in GLAD using the global coordinate system. The basis
of GLAD, like other physical optics codes, was a quasi-paraxial approach which treated folded systems by
implicitly unfolding the system and which could treat only small tilts and decenters. The global coordinate
system is a much more powerful approach which allows components to be located at arbitrary positions in
space and which allows large angle rotations. The global coordinate system allows calculations in three-
dimensional space with correct treatment of optical aberrations of tilted surfaces and with accurate
calculations of physical and optical path differences. Advantages of the global coordinate system and
associated functions are:

• Global positioning of components,
• Arbitrary component rotations,
• Accurate path length calculations,
• Correct calculation of beam azimuthal rotations,
• Exact or approximate aberrations of tilted components,
• Surface polarization effects in s- and p-directions.

Systems which require this type of sophistication in the code include:
• Free-electron lasers (total path length is important),
• Systems with strongly tilted components,
• Coupled resonators,
• Complex folded resonators,
• Polarization calculations.

The , , , , and  commands use the global coordinate
system. The idealized lens and mirror commands are positioned on the chief ray of each beam.

11.1 Component Location and Rotation in Global Coordinates
To describe the propagation of a beam through a complex three-dimensional optical system, we define

four coordinate systems
• global ray and vertex locations,
• ray complex amplitude distribution,
• vertex component rotations and shape definition,
• surface surface at chief ray intercept point.
When the optical elements are to be located in arbitrary positions with arbitrary rotations, it is necessary 

to define a global coordinate system on which the beam path and the optical components are specified. As 
the beams propagate through the optical system, the global coordinate system is updated. In GLAD, the 
location of the optical component is defined by the vertex location. The rotation is considered to be about 
the vertex location. The direction of the chief ray must also be defined on the same global coordinate system. 
It is also necessary to determine the azimuthal orientation of the complex amplitude distribution about the 

 mirror/global  surface  lensgroup  clap  obs
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chief ray. Systems with out-of-plane components can rotate the beam distribution about the chief ray 
direction. The azimuthal rotation may be determined by establishing a ray matrix consisting of i-, j-, and k-
vectors. The k-vector defines the chief ray direction.

The properties of the optical component are most easily defined in terms of a vertex coordinate system. 
For a rotationally symmetric surface, the z-axis is identical to the axis of symmetry. A fourth coordinate 
system at the point of intersection of a ray allows calculation of the polarization properties. This surface 
coordinate system consists of s-, p-, and n-vectors. The n-vector is the surface normal vector. We choose the 
surface normal vector to point toward the center of curvature. Figure 11.1 illustrates the four coordinate 
systems schematically.

The unit vectors for the systems are

global coordinate system,

ray coordinate system,

vertex coordinate system,

surface coordinate system.

The ray, vertex, and surface matrices are described in terms of unit vectors with respect to the global
coordinate system. A matrix corresponding to the coordinates systems may be defined in terms of the three
column vectors of each system.

Fig. 11.1. The global, ray, vertex, and surface coordinate systems.

x̂ x̂ y, ,

î ĵ k̂, ,

t̂ û v̂, ,

ŝ p̂ n̂, ,
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ray coordinate matrix, (11.1)

vertex coordinate matrix,

surface coordinate matrix.

The coordinate matrices may be used as rotation matrices to redefine vectors in different coordinate
systems. Consider the vector, , where we use the subscript, g, to indicate the vector is defined in global
coordinates. We will use v, r, and s as subscripts to indicate vectors in vertex, ray, and surface coordinates.
In vertex coordinates, the same vector would have the identification, . The transpose of the coordinate
matrix may be used to transform the coordinates of a vector to a new system

, (11.2)

where

. (11.3)

The superscripted t indicates matrix transpose. The inverse of a rotation matrix is the same as its transpose.
The global coordinate system is initialized with the global command. The position of elements may be
defined on this global coordinates system by specifying the vertex position with the command,

.
The rotation of the element about the vertex position may be specified with the command,

. The vertex location and rotation may be defined absolutely or with reference to the
current position of an optical beam. The rotation of the vertex is defined by the user by Euler angles.
Specification takes the form

vertex/rotate/add kbeam α β γ
vertex/rotate/set α β γ
/add adds the angles α, β, and γ to the current values and /set resets the values. The rotation angles 

α, β, and γ apply to x-, y-, and z-axis rotations. These rotations obey the right hand rule. A positive x-rotation 
is done by rotating in the direction of the fingers of the right hand when the thumb is aligned with the 
positive x-direction. The rotations are applied in the order x, y, and z. Alternate orders may be used by 
calling vertex/rotate several times. For example,

vertex/rotate/absolute kbeam 0 0 γ
vertex/rotate/absolute kbeam 0 β 0
vertex/rotate/absolute kbeam α 0 0

These commands cause the rotation order to be z, y, and x. See the GLAD Command Description for more
detail on vertex.

The rotations are defined to be

Rgr î ĵ k̂=

Rgv t̂ û v̂=

Rgs ŝ p̂ n̂=

ag

av

ar Rrgag=

Rrg Rgr
t=

 vertex/locate

 vertex/rotate
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, (11.4)

,

.

The composite rotation of all three angles (in the order x, y, and z) is 

. (11.5)

The mirror/global command will correctly calculate the change in the beam for arbitrarily large
angles. The commands clap and obs may be applied at nonnormal angles.

11.1.1 Code V Translation
The global commands make use of beam selection under the command, beams. With beams, we may

selectively turn on or off all or individual beams for all subsequent positioning and mirror/global commands.
This facilitates defining a specific optical path of a complex task by allowing all components in the path to
be defined in sequence. GLAD specifies the rotation and translation of the vertex. Traditional lens design
programs specify coordinate breaks. The rotation directions may also be different. For example in Code V,
a product of Optical Research Associates, the rotation Euler angles are defined by ADE, BDE, and CDE.
These are coordinate break rotations. The rotation of a component located after such coordinate rotations is
the inverse of the net coordinate rotation. Let us define the Code V matrices in primed notation so that the
transformation from Code V coordinate break rotation operations may be written in terms of GLAD, right-
hand role object rotations: 

Code V rotations GLAD system . (11.6)

This object rotation may be written as an inverse of the ordinary order of x-, y-, and z-rotations 

. (11.7)

We may use the GLAD command, 

Rx α( )
1 0 0
0 αcos αsin–
0 αsin αcos

=

Ry β( )
βcos 0 βsin

0 1 0
βsin– 0 αcos

=

Rz γ( )
γcos γsin– 0
γsin αcos 0

0 0 1
=

Rxyz

γ βcoscos γ βcoscos αsin γ αcossin– γ β αcossincos γ αsinsin+
γsin βcos γ β αsinsinsin γ αcoscos+ γ β αcossinsin γ αsincos–

βsin– β αsincos β αcoscos
=

R′CDE γ( )R′BDE β( )R′ADE α( )   ⇔ Rx α( )Ry β( )Rz γ–( )

Rx α( )Ry β( )Rz γ–( ) Rz γ( )Ry β–( )Rx α–( )[ ] 1–=
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vertex/rotate/set/reverse -α -β γ
which applies the inverse of the ordinary forward GLAD rotation. The inverse GLAD rotation is 

. (11.8)

11.2 Chief Ray Propagation
The propagation of a beam through an optical configuration may be described by following the chief

ray. The chief ray in GLAD is defined to be the path of the center of the beam array irrespective of the actual
complex amplitude distribution in the array. The movement of the chief ray is described by geometrical
optics.

We begin by defining several vectors. Since each is in global coordinates, we will omit the g-suffix.
r chief ray position,

chief ray direction,
v vertex location,
s surface intercept of chief ray.
Movement along a ray is defined as a change in the physical path length (PPL). If the PPL is q, then the

vector equation is

, (11.9)

where  is the starting position and  is the final position. GLAD does not use the convention of assigning
negative index after reflection from a mirror. The index of refraction is always positive. Consequently, only
positive values of q are physically meaningful.
GLAD encourages the user to make only forward movements. Redirection of the beam should be made with
the mirror command. To facilitate the use of index of refraction, we use both optical and physical path
length information. The total optical path length (OPL) along the ray through various media is

, (11.10)

where  are the refractive indices and  are the distances traveled along the ray in the ith media.

11.2.1 Chief Ray Surface Intercept
We first find the point of closest approach to the vertex of the conic. This approach is more numerically

stable than finding the distance to the vertex tangent plane, since the tangent plane may rotate so that it is
far from normal to the ray. Let  be the translation vector from a point on the ray,  to the vertex of the
surface,

. (11.11)
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The propagation distance, , to the point of closest approach is

. (11.12)

The new vector position is

. (11.13)

The equation for propagation along the ray to the interception point on the surface is

, (11.14)

where  is the chief ray intercept on the surface. The incremental distance from the point of closest
approach to the vertex to the surface is . See Fig. 11.2.

The solution for  is described below. It is convenient to work in vertex coordinates for this problem

. (11.15)

The coordinates of the optical element are expressed in vertex coordinates. We will use , , and as vertex
unit vectors,

, , and . (11.16)

The equation for a sphere, in vertex coordinates, for position vector  is

, (11.17)

Fig. 11.2. Parameters for ray propagation.
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where R is the radius of the surface (also defined in vertex coordinates), the vertex of the spheres is set to
(0,0,0), and  is the point of intersection

. (11.18)

Similarly, the equation for a conic, in vertex coordinates, for position vector 

, (11.19)

. (11.20)

Since the equation for ray propagation is,

. (11.21)

This gives us

. (11.22)

where , since  is at the point of closest approach and therefore perpendicular to the ray

. (11.23)

We also have

, (11.24)

, (11.25)

. (11.26)

The above equation has the form,

, (11.27)

where

, (11.28)
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, (11.29)

, (11.30)

, (11.31)

where .

In general, conic surfaces have two intersection points. In GLAD, we choose the root with the smallest
positive value for , unless asi has been chosen in the mirror/global command. This results in
the smallest forward propagation step. Backward propagation to a surface is not allowed, unlike ray trace
codes. If neither root results in a positive  sum, a ray error is issued. This implies that all of the conic
surface is behind the ray. The user should consider the position of the beams at the point in the GLAD
command sequence at which the vertex is defined. If asi is selected, the root giving the largest 
sum is chosen. If this distance is negative, a ray failure error occurs.

Having calculated the optical path length to the surface intercept, a call to prop is issued for the
. prop is similar to the dist command except that propagation is always forward along the chief

ray and the global coordinates are altered by prop.
By propagating to the chief ray intercept, all of the diffraction effects are accounted for in the region of

the transverse distribution near the chief ray. Regions of the transverse distribution distant form the chief
ray have the correct propagation distance, but the aberrations due to reflection from the optical component
will, in general, occur earlier or later in the propagation step than they should.

11.2.2 Calculation of Local Surface Properties
To calculate the surface coordinate system it is first necessary to determine the surface normal. In the

special case of a conic, the normal to the surface, , is calculated by taking the negative of the surface
gradient

Table. 11.1. Selection of quadratic form giving best numeric accuracy.
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, (11.32)

. (11.33)

GLAD uses the convention that the surface normal points toward the center of curvature of the surface.
In the more general case, we may have a surface defined by the parametric equation for position vector

r such that

. (11.34)

The tangent of the surface in the x- and y-directions are

, , (11.35)

, . (11.36)

The surface normal is found from

. (11.37)

11.2.3 Calculation of the Surface Coordinate System
Having found  and knowing the chief ray direction , we may define the surface coordinate system. Two
tangent rays on the surface may be defined,  and . These correspond to the s- and p-directions used for
polarization calculations. The vector  is in the plane of reflection and  is perpendicular to the plane of
reflection, as shown in Figure 11.3,
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, (11.38)

. (11.39)

The surface coordinate system is

, (11.40)

where the parenthesis indicate concatenation of column vectors into a matrix. When the beam strikes the
surface at normal incidence, the cross product of  and  is zero and  is not defined. However, at normal
incidence, it is not necessary to distinguish between the s- and p-vectors. In practice, when the cross product
of Eq. (11.38) drops below a threshold value, GLAD assigns  and  to be identical to  and .

11.3 Reflection
The ray matrix after reflection may be calculated by reversing the sign of the components of the matrix
which are parallel to the surface normal. The ray matrix in global coordinates is . In surface coordinates
the ray matrix is

. (11.41)

We may write the components of  as

Fig. 11.3.  Illustration of surface coordinates.
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---------------=
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. (11.42)

The reflection operation changes the sign of the n-components

. (11.43)

The reflected ray matrix in global coordinates is

. (11.44)

An alternative form of the reflection equation, which is independent of the coordinate system, is 

, (11.45a)

, (11.45b)

. (11.45c)

Equation (11.45a) shows that reflection consists of reversing the component in the -direction.

11.4 Beam Print on Surface
The beam print on the optical surface may be determined by first finding the surface coordinate system.

The beam print on the optical surface is, of course, the same for refractive or reflective surfaces because the
beam print is determined only by the incident beam and the surface normal, not by the exiting ray. The
incident beam is determined by the ray matrix,

. (11.46)

The surface coordinate matrix is determined by the surface normal and the incident ray  and Eq.
(11.38). If a circular beam is projected onto the surface the magnification in the s- and p-directions is (see
Fig. 11.4)

, . (11.47)
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Given an arbitrary azimuthal orientation of the incident ray matrix K, the projections of the  and 
vectors onto the surface are

, . (11.48)

For a more detailed treatment of magnification of the beam print on tilted surfaces see Section 11.7.4.

11.5 Refraction
To compute the ray matrix after refraction we use the refracted direction vector ,

, (11.49)

, (11.50)

. (11.51)

The incident angle is found from the incident ray vectors

. (11.52)

We can use  and  to find a ray matrix referenced to the plane of refraction.  is perpendicular to the
plane of refraction, and  orthogonal to  and  and  orthogonal to  and 

, , . (11.53)

Fig. 11.4. Magnification in the s- and p-directions.
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ĵ n̂×
--------------=

k̂′

k̂′ 1
n'---- nk̂ Γn̂+( )=

Γ n′ I′( )cos n I( )cos–=

n′ I'( )cos + n′2 n2 1 cos2 I( )–[ ]–=

I sign k̂ n̂⋅( ) k̂ n̂×( ) î⋅,acos[ ]=
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An incident ray vector  may be defined

, . (11.54)

The new ray matrix, carrying forward any azimuthal rotations contained in the original matrix

, (11.55)

where the refraction rotation matrix is

, (11.56)

11.6 Calculation of Local Surface Curvature
GLAD calculates the local surface curvature where the chief ray strikes the surface. The local curvature

is used to calculate the new phase bias to be applied to complex amplitude and also may be used for a quick,
approximate calculation of the aberration, using only the astigmatism terms.

The GLAD code uses a toric phase bias of the form

(11.57)

The bias phase is used to reduce the amount of phase which resides in the complex amplitude
distribution. The separability of the diffraction calculations allows us to make adroit use of separable bias
as described in the diffraction theory section of this manual. Spherical, cylindrical, and, in the general case,
toric phase bias may be used. After reflection from a curved optical surface, this bias phase must be
recalculated. This section describes the calculation of the new toric bias phase.

Consider a wavefront of arbitrary shape incident on a conic surface. This wavefront may be fit
approximately to a toric surface with residual error. The toric fit is, of course, not a complete fit of the second
order terms. Focus error and one mode of astigmatism are related to the toric terms as described below. The
astigmatism term at 45º with respect to the ray coordinate matrix is not fit. It is convenient to define the
surface deformation as surface 

R00 piston
C11 x-tilt
S11 y-tilt
R20 focus error
C22 vertical-horizontal astigmatism
S22 45º astigmatism

The wavefront error using these terms is

(11.58)
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These terms have extrema of +1 and -1.
It will at times be convenient to express the Zernike terms in cartesian coordinates.

(11.59)

The surface variance is

(11.60)

The terms  and  are the normalization factors for the Zernike polynomials. This
description differs from Born and Wolfe in that the factor of 1/2 is associated with the azimuthal terms.

The S22 term has extrema at +45º and -45º. This term can not be represented by the bilateral form of Eq.
(11.57). If significant amounts of S22 exist, the only way of applying the appropriate bias terms to remove
S22 is to rotate the coordinate terms. The C22 component being is incorporated by toric bias phase. Systems
with strongly cylindrical components at 45º azimuthal angles will be problematic. In most systems currently
being studied this limitation is not a severe restriction.

The surface aberration is described in terms of the sagittal and tangential radii (or s- and p-radii)[1]:

, (11.61)

We may find the Zernike expression of the toric terms by expanding the Zernike terms in x and y. We
have

R00 = (11.62)

R20 = 

C22 = 

S22 = 0

The piston term arises from conversion from toric to Zernike polynomials. We need not retain it. Given
the Zernike terms we may determine the toric radii of curvature.

, (11.63)
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Transformation of the surface to ray errors requires a tilt of the aberrations from the surface to the
reference plane. This is followed by an azimuthal rotation in the reference plane to describe the aberrations
correctly in the ray transverse coordinates.

We define an azimuthal rotation, γ, as the angle from  to . All rotation angles are defined as right hand
rotations. To make a right hand rotation consider the thumb of the right hand aligned with the axis of
rotation. A positive rotation is one that has rotation of the first vector into the second in the direction of the
hand to the end of the fingers.

(11.64)

where  is the sign function that is defined to be

(11.65)

The incidence angle, I, is defined similarly to Eq. (11.64):

(11.66)

The surface aberration polynomials are defined in terms of s and p,

, , , (11.67)

They are converted by a tilt of the axis such that the x-direction is changed by  and the y-component
by .

To sum the terms by polynomial, let the polynomial be

(11.68)

We sum the a, b, c, and d terms.

(11.69)

(11.70)

(11.71)
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x (11.72)

(11.73)

(11.74)

(11.75)

(11.76)

(11.77)

(11.78)

(11.79)

(11.80)

, , , (11.81)

(11.82)
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(11.83)

. (11.84)

(11.85)

Given Zernike polynomials , we wish to find . The aberration coefficients, after
azimuthal rotation, are

(11.86)

(11.87)

(11.88)

(11.89)

The values for surface radii in the reflected system are

, (11.90)

The new toric radii may be used to bias the phase after the phase front has been modified by the conic
surface. The value of  may be added as an aberration in lieu of performing the exact ray calculations.
The  term takes the form

(11.91)

where  is the complex amplitude. The factor of , applied to , takes into account the
change from surface sag to wavefront error.

11.6.1 Exact Ray Tracing
Exact ray tracing is done in the same fashion as the chief ray up to the surface intercept. The first

reference surface is the plane perpendicular to the chief ray at the chief ray intercept. The second reference
surface is the plane perpendicular to the exiting chief ray. See Fig. 11.5. For each point in the transverse
distribution a new starting ray position and direction is determined. We define the vectors 

position vector of chief ray,

R20r
1
2---R20s

1
I( )cos--------------- I( )cos+ 1

4---C22s
1

I( )cos--------------- I( )cos–+=

C22r R20s
1

I( )cos--------------- I( )cos– C22s
1

I( )cos--------------- 1++=

S22r S22s=

Zn r φ,( ) Zn r φ γ–,( )

R002 R001=

R202 R201=

C222 C221 2γ( )cos S221 2γ( )sin–=

S222 C221 2γ( )sin S221 2γ( )cos–=

1
Ry2

------- 4R202 2C222+= 1
Rx2

------- 4R202 2C222–=

S22
S22

a x y,( ) a x y,( ) j n' n–( )2π
λ

------S222 x2 y2+( )–exp→

a x y,( ) n′ n–( ) S222

r

Jump to: ,  Commands  Exam
ples



230 GLAD Theory Manual
direction vector of chief ray,

position vector for each x, y point,

direction vector for each x, y point.

The position vector is calculated to be

, (11.92)

, (11.93)

where xi are the local coordinates of the transverse beam distribution and  and  are the phase bias radii.
In this approach, the ray slopes are determined by the phase bias radii. Exact slopes could be taken, but the
errors with the simpler assumptions are very small. We shall need the following vectors 

chief ray intercept,
distance from chief ray surface intercept to current ray intercept in global coordinates.

The reflected direction vector for the current ray, indicated by primes on the coordinates, is 

Fig. 11.5. The chief ray intercept determines the vertex of the incident local reference surface. The reflected ray and 
the local wavefront curvature determine the exiting local reference surface. and  are the optical paths to the 
surface from the incident and exiting reference surfaces respectively.
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k̂xy

k̂ x
Rx
----- î– y
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. (11.94)

The vector between the chief ray intercept and the intercept of the current ray being traced is

. (11.95)

Consider reference planes perpendicular to the chief ray and reflected chief ray. Let  be the distance
from the chief ray reference plane to the surface measured along the chief ray and  be the distance from
the surface intercept to the reflected chief ray reference plane measured along the reflected chief ray. Then 

, , (11.96)

where primed quantities indicated imaged quantities. The transverse intercepts on the reflected chief ray
reference plane are found from  

, , (11.97)

where the unit vectors of the reflected system are found with Eq. (11.94). The complex amplitude is
transferred from the first reference plane to the second by

. (11.98)

In general, the point  will not lie on a grid point in the new array. The value must be interpolated to
the nearest neighboring grid points.

Figure 11.5 shows a ray emanating from a point on Reference Surface 1. Such a ray will exhibit a
slightly different wavefront slope as a function of the aberration in the beam. The optical path length from
the Reference Surface 1 to Reference Surface 2 is relatively insensitive to the exact path of the ray. This is
a consequence of Fermat’s Principle which states that the optical path length along an optical ray is
stationary, i.e., closely neighboring paths have essentially the same length.

11.7 Mirror Systems, Image Rotations, Image Parity, Common Prisms
Plane mirrors are used to pipe the optical beam through a system, to steer the beam to a specific

direction, and to provide image rotation. It is commonly said that a mirror causes a left-to-right reversal.
This is not strictly correct: a single mirror cause a front-to-back reversal which has a reversal of parity
associated with it. There are mirror systems which actually do cause a left-to-right reversal, such as the K-
mirror, which will be discussed. In elementary optical texts it is common to illustrate the effect of mirrors
by showing how the letter “R” is imaged. This simple concept works well for one mirror and adequately for
a simple two-mirror system, but becomes unworkable for more complex systems. The mirror matrix method
used in this section is much more powerful and has the advantage that it is readily implemented on a
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computer. The mirror matrix also has the advantage that all mirror systems having the same mirror matrix
will have the same behavior. In many cases the mirror matrix may be determined by inspection.

11.7.1 Mirror Matrices
For a ray direction vector of , the equation for reflection from a mirror is (see Fig. 11.6.) we have the

equation from Eq. (11.45c)

. (11.99)

In Dirac notation,  is a bra and  is a ket,  is an inner product

inner product , (11.100)

 is an outer product

outer product . (11.101)

We can write the equations for incident and reflected k-vectors in terms of the surface normal of the mirror
from Eq. (11.99) in bra-ket notation as

Fig. 11.6. Reflection of k-vector.
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. (11.102)

Reversing the order of multiplication of the two elements of the second term on the right side and also
reversing the order of terms in the inner product, we have

. (11.103)

Where I is the identity matrix. We have the relationship

. (11.104)

From Eq. (11.103) we can define the mirror matrix

. (11.105)

Given the surface normal , we may compute the mirror matrix using the definition of the outer product
from Eq. (11.101).

The Law of Reflection may now be written in terms of the mirror matrix

 or . (11.106)

A series of reflections is calculated by successive mirror matrix multiplications. For example

, (11.107)

where

. (11.108)

The mirror matrix is derived from the mirror normal vector . For example a mirror with a surface
normal aligned with the z-axis is

. (11.109)

We form the mirror matrix  for this surface normal as follows (see Fig. 11.7): 

k2|  k1|  2 k1 n |  n| –=

k2|  k1|  2 n|  n k1 | – I 2 n|  n |–[ ] k1| = =

I l|  l |
l 1=

3

=

M I 2 n|  n |–=

n̂

k2|  M k1| = k̂2 Mk̂1=

k̂4 M3M2M1k̂1 Mtk̂1= =

Mt Mi
i 3=

1

∏=

n̂

n̂z

0
0
1

=

Mz
Jump to: ,  Commands  Examples



234 GLAD Theory Manual
, (11.110)

. (11.111)

The mirror matrices for mirrors with normals in the x- and y-directions are

 and . (11.112)

The chief ray direction is commonly used in geometrical optics but does not allow the azimuthal beam
rotations to be determined. Both the ray direction and azimuthal rotation may be defined by a ray matrix

. (11.113)

A beam matrix aligned with the x-y-z coordinate system has the ray matrix:

Fig. 11.7. Mirror matrix .
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, (11.114)

as indicated in Fig. 11.7.
The beam coordinate system may be rotated arbitrarily. The Law of Reflection may be applied to the

ray matrix

. (11.115)

A general condition of reflection of an arbitrarily rotated matrix is illustrated in Fig. 11.8.

A ray matrix may be right or left handed. The matrix defined in Eq. (11.114) is a right-handed coordinate
system. The system is right-handed if

, (11.116)

and left-handed if the cross product is . Left or right handedness may also be called positive or negative
parity or chirality. The parity of a matrix may also be determined by calculating the sign of the determinant
of the matrix

parity = . (11.117)

The matrix of a single mirror flips the parity. For example reflection from a mirror with its surface
normal to the z-axis changes the ray matrix to

Fig. 11.8. Object and image space characteristics may be defined by the ray matrix.
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single mirror , . (11.118)

The transverse vectors remain the same and the sign of  is reversed, leading to a left-handed coordinate
system. This is sometimes referred to as reversion.

An inverted ray matrix has the form

inverted ray matrix , (11.119)

as indicated in Fig. 11.9, but has positive parity.

The parity of a matrix product is the product of the parities of the individual matrices. The parity of
rotation matrices is always +1 and the parity of any single mirror is -1, so the parity of a system of N mirrors
is

parity of N mirrors = . (11.120)

If the ray matrix is reflected from a mirror defined by M that has been given a rotation described by the
rotation matrix R the reflected ray matrix has the form

(11.121)

This is called a similarity transformation and the rotation matrix R must be a real unitary matrix which has
the properties  and .

Rotation matrices are described by Eq. (11.4) and (11.5). Mirrors having the orthogonal elementary x-,
y-, or z-rotations lend themselves to simple analysis. Some of the properties of these systems are shown in
Table 11.2.

Fig. 11.9. An inverted ray matrix.
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Consider the arrangement of three mirrors shown in Fig. 11.10 to form a K-mirror system. All three
mirrors may be considered to be an x-rotation of a z-mirror. The end mirrors may be given some suitable
rotation . The overall mirror system may be written

. (11.122)

So the rotation properties of the three mirrors of the K-mirror system are identical to the rotation of the
single y-mirror. For an azimuthal rotation, the K-mirror system will rotate the image at twice the rotation
rate of the system. 

Table. 11.2. Effects of rotations on x-, y-, and z-systems, method of cofactors.

x-system y-system z-system

cofactor cofactor cofactor 

for for for 

for for for 

Fig. 11.10. K-mirror system. It is equivalent to the elementary y-mirror system .
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We can also construct this matrix directly by inspection. The system passes the beam directly through
so the exiting beam is parallel with the input beam so that

. (11.123)

The  vector will not be changed because all mirrors have x-rotations. The parity is -1 so

, (11.124)

and the mirror matrix must therefore be, 

. (11.125)

The K-mirror system can be used as an image rotator by rotating the whole assembly azimuthally. The
image will rotate at twice the angle of the azimuthal rotation. This is obvious as soon as we recognize that
the mirror system responds as . See the properties of the y-mirror from Table 11.2. One of the advantages
of this is that any system—no matter how complex—will behave according to the behavior of its mirror
matrix. The procedures here can be used to analyze any mirror system and prism systems where the
refractive surfaces are normal to the beam. This is very common for prism systems since only normal
incidence will insure no dispersive effects.

11.7.2 Common Mirrors and Prisms
The following pages illustrate some mirror configurations. The characteristics of the system may often

be analyzed by inspection by tracing the k-vector, finding either the i- or j-vector, and deducing the other
component from knowledge of the parity.

An important class of systems has the output ray parallel to the input ray. These are called direct vision
systems. If the parity is even the image will be insensitive to rotation of the system about the line of sight.
If the parity is odd the image will rotate at twice the angle of the azimuthal rotation.

For direct vision prisms, there are often mirror equivalents to the prisms. See MIL-HDBK-141. Prisms
which use a surface in both reflection and transmission, such as the Pechan prism, do not have direct mirror
equivalents. Although prism systems are heavier than similar mirror systems, they are rigid and, therefore,
retain their alignment state under shock and vibration. For example, prisms are always used in binoculars to
achieve a rugged instrument.

90º roof prisms have the same reflection properties as a mirror at the same angle put flip the parity. 90º
roofs must be made very carefully—any error in the apex angle will result in sever aberration, not just an
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error in the exiting angle. Roofs other than 90º have two solutions depending on which mirror is struck first.
All roofs deviate the incident ray by a fixed angle, independent of rotation about the roof line.

Three-mirror systems are similar to one-mirror systems, except that one has greater control of the
configuration. Note carefully the difference between direct vision prisms with odd parity, which are beam
rotators and direct vision prism systems with even parity which cause 180º rotation of the image. Figure
11.11 illustrates some elementary mirrors and roof mirrors. Figure 11.12 illustrates some roofs with 45º apex
angles and the corner cube. Figure 11.13 illustrates some 90ºdevation systems. Figure 11.14 illustrates some
direct vision systems (k-vector exits parallel to input k-vector)..  

Traditional Terms
invert 180º rotation about the direction of propagation and parity change,
revert parity change,
erect image is inverted and reverted, i.e., image is simply rotated 180º,
direct vision exiting line-of-sight is parallel to entering line-of-sight.

11.7.3 Image Positions
The principles discussed so far may be extended to locate image positions. The position of a mirror may

be defined by its normal vector  and distance from the coordinate system of . If we know the position
vector of any point on the surface, e.g., some vector , then the distance to the mirror surface along the
perpendicular (the minimum distance) is (see Fig. 11.15)

. (11.126)

The vector s may be found from the position vector to the point and a position vector r to any point on
the mirror  (see Fig. 11.16). The ith optical length is

. (11.127)

The position of an image point may be designated by the vector  and the corresponding image point in
the mirror by the vector , such that

. (11.128)

We can find the image point of a series of mirrors by an operator sequence, for example,

. (11.129)
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Fig. 11.11. Elementary Mirrors and Roofs.
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Fig. 11.12. Roofs with 45º apex angles and the corner cube. All roofs other than 90º have two solutions depending 
on which face the ray hits first. Parity is even, angle of ray deviation is twice the apex angle.
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ĵ

k̂

k̂

k̂

k̂

k̂

ĵ
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Fig. 11.13. Some 90º deflection systems.
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Fig. 11.14. Some direct vision systems.
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11.7.4 Beam Print on Tilted Optical Surfaces
The beam print on the optical surface may be determined by first finding the surface coordinate system.

The beam print on the optical surface is, of course, the same for refractive or reflective surfaces because the
beam print is determined only by the incident beam and the surface normal, not by the exiting ray. See Fig.
11.1. The incident beam is determined by the ray matrix Eq. (11.113).

If a circular beam is projected onto the surface, the magnifications in the s- and p-directions are

, . (11.130)

Defining the direction of maximum magnification in the surface as a vector, we have

Fig. 11.15. Point O is imaged to . s is a vector from the object to a point on the mirror. q is the distance to the 
mirror.

Fig. 11.16. Location vector of  is . Location vector of  is .
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. (11.131)

Expressing  in the beam coordinate system we have

. (11.132)

The azimuthal orientation f is

. (11.133)

After refraction or diffraction we have the exiting direction vector . We may now compute an s´-p´-k´
coordinate system with  perpendicular to the n´-k´ plane:

, . (11.134)

The magnification in the p´-direction is defined by the vector

. (11.135)

In beam coordinates  is

. (11.136)

The azimuthal orientation f´ is found by

. (11.137)

In the case of refraction and reflection (but not diffraction from a grating in the general case), f = f´as k, n,
and k´ are in a common plane. So for these common-plane cases, the magnification change in the f−direction
is
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. (11.138)

The magnification distortion may be characterized by progression of the beam print of an initial circular
shape. A series of distortions of various magnifications mp and angles f transform an initial circular shape
into various elliptical shapes of varying size and angular orientation. If we start with a unit radius circle, the
magnification after a series of refractive operations may be characterized by [Mx, My, f] where f is some
azimuthal angle of rotation and Mx and My are mearured in the rotated coordinate system.

The evolution of magnification of arbitrary magnitude and direction may be characterized by the
evolution of a unit circle as a general ellipse centered at (0,0). The general equation for an ellipse that is
centered about the axis is

. (11.139)

As we are interested only in the transformation of an initial unit circle, we may consider D = -1 and then
ignore it, so that we consider only a vector of the ABC coefficients.

Consider a circle that is transformed by different magnifications in the x- and y-directions:

. (11.140)

and of course we have the ABC vector for the unit circle

. (11.141)

Equation 11.140 is the standard form of the ellipse and allows the magnification to be incorporated into the
units used by GLAD for the x- and y-directions. We note the the invariant properties of an ellipse:

(11.142a)

(11.142b)

D = constant (11.142c)
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The magnification due to surface refraction or diffraction from Eq. 11.138 may be implemented by
rotating to the counter-clockwise angle f, applying the magnification, and rotating back. The rotation
operation for an ellipse may be written in terms of the elliptical coefficients, A, B, and C in the form of an
ABC vector from Eq. 11.139.

(11.143)

where the rotation operator for the ABC vector RABC(f) is defined to be

(11.144)

Consider an ellipse with ABC coefficients [1, 0, .25] having the equation:

(11.145)

such that the ellipse is much longer in the y-direction. We have points (1., 0.) and (0, 2.) as solutions with
minor and major axis lengths of 1.0 and 2.0 respectively. We wish to rotate this ellipse 45º in the counter
clockwise direction and want to find the new ABC′ vector by solving Eq. (11.143) using Eq. (11.144):

(11.146)

We find that the invariant conditions A + C = 5/4 and B2 – 4AC = –1 are satisfied by testing the beginning
and ending ABC vector. For this case, the minor axis is defined by x = y with length 1.0 and the major axis
is defined by the condition x = –y with length 2.0. The lengths of minor and major axes for the rotated ellipse
are identical to those for the unrotated ellipse.

The counter-clockwise angle y needed to rotate the coordinate system into the principle axes may be
found from Eq. 11.139,

(11.147)
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Eq. (11.147) solves for the condition B = 0, but has an ambiguity of 90º as there are two solutions with the
roles of minor and major axes reversed.

To rotate into the principle axes,

(11.148)

where Ma and Mb are the magnifications in the principle axes. The irradiance is altered by the factor
1/MaMb.

For the general equation of the ellipse of Eq. 11.139, a magnification in the y-direction of My may be
implemented by the matrix operation:

(11.149)

Implementing a similar magnification in an arbitrary direction with c and s representing the respective
cosine and sine components we have:

(11.150)

(11.151)
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(11.152)

Equation (11.152) allows us to calculate the matrix for propagation of the ABC vector of ellipse coefficients
by the indicated ABC matrix operation.

To evaluate Eq. (11.152), inject the circle vector ABC = [1, 0, 1]. The vector is ABC′:

(11.153)

using the simplification c2 + s2 = 1. For Eq. (11.153) we verify that A′ + B′ = (1 + 1/M2) and
B2 - 4AC = -4/M2 as expected from the magnification matrix prior to rotation.

11.7.5 Accumulating Magnification Over Many Operations
We may accumulate the magnification effects of multiple operations by propagating the successive ABC
vector. If we know the ABC vector at the end of a series of arbitrary magnification operations, we may factor
this vector into a 45 degree magnification operator followed by an x-y magnification operator that act on a
unit circle to yield the desired ABC vector:
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(11.154)

(11.155)

(11.156)

Equation 11.156 yields the following solution for the factored magnification operations

Oblique magnification: , (11.157a)

X-magnification: , (11.157b)

Y-magnification: . (11.157c)

In the factored form of the result, we have three successive one-dimensional magifications. The change
in intensity is based on the cumulative effect of all magnification operations either from the successive effect
of all surfaces taken one-by-one or from the factored form of the result as described in Eq. 11.154:

change in intensity . (11.158)

A
B
C

1
Mx

2------- 0 0

0 1 0

0 0 1
My

2-------

RABC 45–( )

1 0 0

0 1
M----- 0

0 0 1
M2-------

1
0
1

=

A
B
C

1
Mx

2------- 0 0

0 1 0

0 0 1
My

2-------

1
2---

1 1– 1
2 0 2–
1 1 1

1 0 0

0 1
M----- 0

0 0 1
M2-------

1
0
1

=

A
B
C

1
2Mx

2---------- 1
2Mx

2M2------------------+

1 1
M2-------–

1
2My

2---------- 1
2My

2M2------------------+

=

M 1
1 B–------------=

Mx
1 B 2⁄–

A-------------------=

My
1 B 2⁄–

C-------------------=

1
MxMyM--------------------
Jump to: ,  Commands  Examples



251
11.7.6 Tunnel Diagrams
The optical performance of a prism with normal surface interface angles is the same as that of a plane-

parallel plate of equivalent thickness. A prism—no matter how complex—may be represented by a solid
block of glass of equivalent optical length. A tunnel diagram may be constructed by “unfolding” the prism.
Figures 11.17.a and 11.17b show the appearance of a pentaprism before and after unfolding about the two
reflecting surfaces. The reflecting surfaces are TIR so the loss is negligible. A block of the same glass with
the same length should have exactly the same optical effects as the pentaprism.

11.7.7 Reduced Distance
The reduced distance is the length of an air space equivalent of a glass length. The equivalent air space

has the same paraxial properties as the glass length represents, i.e., the rise or fall of a ray is the same when
traversing the glass path or the equivalent air path. See Fig. 11.18.a. If L is the length in glass, then L/n is
the equivalent length in air. The equivalence is strictly a first-order property. A plane parallel piece of glass
adds aberrations to an noncollimated beam, while the air path does not. An image, when viewed through
glass, looks closer. Similarly adding a glass window to an optical beam moves the image further away. The
image is moved by the difference between the true path and the reduced path, i.e., image shift is (1 - 1/n)L—
about L/3 for low index glass, . The unfolded pentaprisms has a reduced distance according to the
length of class in the unfolded system. See Fig. 11.18b. The wavelength in glass is  where  is the
wavelength in vacuum. The diffraction properties of light depends on the wavelength (not the vacuum
wavelength). Diffraction properties will, therefore depend on the reduced length. Aberrations, in contrast,
determined by the optical path length differences. 

11.8 Gratings
Gratings may be treated in detail with sufficient sampling density to fully resolve the micro structure,

see the grating command for amplitude gratings and abr/(ripple) commands for phase gratings. As it
is not practical to use more than a few thousand sample points, the maximum number of grating lines is, in
practice, limited to about one thousand or fewer grating lines. For gratings with many thousands of grating

Fig. 11.17.a. Pentaprism produces an exact fold and uses 
TIR reflection.

Fig. 11.17b. Pentaprism produces an exact 90º fold and 
uses TIR reflection.
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lines it is more appropriate to deal only with the macro structure and follow a single grating order. For a
given grating order, we may compute the direction of the diffracted light from the Bragg condition, the
efficiency considering the profile of the grating line, and aberrations due to the substrate. The
grating/global command is a nonresolved model of a phase grating. 

11.8.1 The Bragg Condition
For a grating having many thousands of grating lines the radiation is sharply defined to the grating

orders. Consider a patch of the grating which may be considered effectively flat even for a curved substrate.
We have a refracted or reflected wave from the transmission or reflection grating respectively yielding a
wave vector  and a diffracted direction wave vector . Γ is the grating vector, m is the diffracted order,
and  is the direction vector. Let the substrate plane be identified by a normal vector . For perfect phase
matching across the plane of the substrate we have:

, (11.159)

where the integration is taken over the plane of the substrate. The condition for k to lie in the substrate plane
is . This may be expressed via cross products:

, (11.160)

. (11.161)

We may also write the grating equation in terms of the k-vector projections on the substrate:

Fig. 11.18.a. Reduced length is the equivalent air path 
representing propagation through glass. The image shift 
due to the glass is .

Fig. 11.18b. Reduced tunnel diagram, equivalent air 
length. Compare with Fig. 11.17b.
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, . (11.162)

The grating equation for the in-plane k-vector components is:

. (11.163)

We may now construct  from ,

(11.164)

Taking advantage of the fact that , we have

(11.165)

 gives the sign of the incident wave vector relative to the surface normal. s is +1 for a
transmission grating and -1 for a reflection grating.

A reflection grating may be viewed by considering the substrate as a mirror followed by a transmission
grating. The reflection flips the sign of the components perpendicular to the surface:  and
the Bragg condition from Eq. (11.163) remains the same, affecting only the in-plane components  and

. See Fig. 11.19.

An alternate approach to Eq. (11.165) is as follows: define V

. (11.166)

Fig. 11.19. A reflection grating (a) is functionally the same as reflection from the substrate followed by a 
transmission grating of the same period and orientation (b).
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From Welford the solution is[10]:

. (11.167)

We can use  and  to find a rotation matrix similar to the method displayed in Eq. (11.53) and Eq.
(11.54).

In the case of an incremental change in wavelength, the result may be calculated by using the derivative
of Eq. (11.165)

(11.168)

(11.169)

(11.170)

(11.171)

11.9 Gratings (Unresolved Microstructure)
In GLAD, gratings may be treated as resolved or unresolved structures. For the resolved treatment, we

must have 6 to 8 sample points over the smallest features. The need to place this many points across each
grating line sets a practical limit of a few hundred grating lines to keep the array dimensions below 2048 or
4096. The resolved model has the advantage that all grating orders are calculated simultaneously and the
efficiency is calculated from the normal diffraction propagation routines—no special effort is needed.

For gratings with a large number of lines per aperture diameter, the orders may be well separated in
angle and it may suffice to model only one diffracted order at a time. In this section we consider how grating
efficiency may be calculated. Let us first consider plane gratings and collimated light. Noncollimated beams
and curved grating substrates may be treated in local regions by the local grating substrate slope and local
beam normals.

Let us consider an incident plane wave of the form

, (11.172)

where  and  are the complex amplitudes of the x- and y-polarization states. Similarly, the exiting beam
may be specified by

k̂′ V n̂ V⋅( )n̂– n̂ 1 V V⋅– n̂ V⋅( )
2+[ ]

1 2⁄
+=

k̂ k̂′

dk̂′
dλ
-------- d

dλ
------ k̂|| mλΓ k n̂⋅

k n̂⋅
-------------s 1 k̂′||  

2– n̂+ + 
 =

dk̂′
dλ
-------- mΓ k n̂⋅

k n̂⋅
-------------s 1

2 1 k̂′||  
2–

------------------------------ d
dλ
------ k̂′||  

2n̂–=

d
dλ
------ k̂′||  

2 d
dλ
------ k̂|| k̂||⋅ 2mλ k̂|| Γ⋅( ) m2λ2 Γ Γ⋅( )+ +[ ] 2 m k̂|| Γ⋅( ) m2λ Γ Γ⋅( )+[ ]= =

dk̂′
dλ
-------- mΓ k n̂⋅

k n̂⋅
-------------s

m k̂|| Γ⋅( ) m2λ Γ 2+

1 k̂′||  
2–

------------------------------------------------n̂–=

ψi r( ) e1i
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, (11.173)

where  and  are the complex amplitudes of the x- and y-polarization states of the exiting field. We
can also write this as: 

, (11.174)

 and , (11.175)

where  and  are unit vectors for the two orthogonal polarization states of the exiting beam in
the -direction.

11.9.1 Phase Grating (Unresolved)
The grating will be considered a set of parallel lines lying in a plane defined by  with grating frequency

vector Γ. The phase grating has, in the case of a transmission grating, an index of refraction n. In the case of
a reflection grating, set . The effect of the grating on the wavefront is:

grating function , (11.176)

where  is the complete wavefront function, x is the coordinate in the plane of the grating perpendicular
to the grating lines, ∗ indicates convolution,  is the wavefront across a single grating period,

 is the sampling function at defining grating lines at interval , and  is the line-
to-line wavefront change.

The coefficients  and  of the exiting beam may be found from the expression for coupled wave
efficiency that takes the form of a product of the input mode (Eq. (11.172)), the material equation (grating
function, Eq. (11.176)), and the output mode (Eq. (11.175)):

 and . (11.177)

Considering a single grating order m, and taking into account the periodic behavior due to N identical lines:

, (11.178)
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.

The leading term treats the polarization coupling. The integral evaluates the mode coupling over a single
lines under the assumptions that all lines are identical and using the variable r for integration that is local to
the each line. This method of analyzing the problem is outlined in Fig. 11.20. The global phase matching
term is included in the summation over all lines. This exponent of the phasor will sum to zero when m takes
an integer value. This is the basis of the Bragg condition:.

Bragg condition . (11.179)

When the Bragg Condition is exactly satisfied, all terms in the summation of Eq. (11.178) are identical
(within a constant phase term of modulo 2π). We may drop the explicit treatment of the constant modulo 2π
phase terms and consider only the integral over a single line and the polarization terms:

, (11.180)

Fig. 11.20. A reflection grating (a) is functionally the same as reflection from the substrate followed by a 
transmission grating of the same period and orientation (b).
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.

The coupling of the input beam into the mth diffracted order is α

, (11.181)

, (11.182)

.

We now have the coupling into the exiting diffracted order in terms of the single line coupling efficiency
polarization projections.

The coupling term  is related to the Strehl Ratio:

Strehl ratio = . (11.183)

Evaluation at m = 0, yields the ordinary Strehl Ratio associated with the phase modulation of the grating
function viewed as aberration. The shape of the grating lines may be optimized such the diffraction
efficiency of Eq. (11.181). The term blazing is used when the angle of triangular shaped lines is optimized
to direct the input wavefront into the exiting wavefront as efficiently as possible. The optimum angle for
blazing may be thought of in term of geometrical optics, applied locally to the grating line, such that an input
collimated beam of the proper angle will be refracted or reflected to match the desired output angle that was
obtained from the Bragg condition.

The Bragg condition of Eq. (11.179) has an angular sensitivity on the order of  where D is
the full width of the grating. Hence the angular sensitivity of the Bragg condition is simply related to the
diffraction angle of the full aperture and an error from the Bragg angle causes coupling to drop off as the
Strehl ratio of the full aperture drops off with tilt error. The peak coupling at the Bragg angle is determined
by the Strehl ratio of the wavefront deformation of a single line. In the case of optimum blazing angle, the
coupling factor is α = 1and the projection into the polarization components is

, (11.184)
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The angular sensitivity to blazing angle is on the order of  where p is the grating period.

11.9.2 Amplitude Grating (Unresolved)
An amplitude grating has the same Bragg condition and polarization coupling. The coupling efficiency

associated with a single line is found from Eq. (11.181) with  having the amplitude transmission
function of the absorption grating. The coupling equation Eq. (11.182) may then be used. In the case of a
square grating, the amplitude coupling is found in closed-form to be:

. (11.185)

11.10Decomposing Rotation Matrix into Euler Angles
It is sometimes helpful to interpret the beam matrix K in terms of Euler rotation angles. If the beam has

passed through an even number of mirrors, then K has the properties of a rotation matrix. If the beam has
passed through an odd number of mirrors then the parity of K is negative so it does not have the properties
of a rotation matrix. For this case, the Euler angle decomposition given below will give the direction of the
negative k-vector. Consider a rotation matrix

. (11.186)

An arbitrary rotation matrix may be decomposed into Euler angles α, β, and γ as follows. For a beam
rotation matrix after an odd number of mirror reflections, the rotation matrix will have odd parity and the k-
vector will be flipped.

We proceed to derotate the matrix in the order , , and .

Step 1
First rotate by  by such that the i-vector is parallel to the x-z plane and the y-component is zero

 and . (11.187)

We need to solve .
If , . There are two solutions:  and .
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. (11.188)

Step 2
We now solve for 

(11.189)

and

. (11.190)

If , then  and the two solutions are  and
, but only one choice will satisfy the equation . If , we have

two solutions  and , but only one choice will satisfy the equation .

Step 3
Now rotate by  about the x-axis to align the j-vector with the y-axis,

, (11.191)

. (11.192)
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must have , so we have two solutions  and , but only one will satisfy the
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12. Atmospheric Propagation

This chapter discusses many of the features necessary to model the propagation of laser beams over long
distances. The major considerations are atmospheric turbulence, adaptive optics, jitter of the beam, thermal
blooming and integration of the irradiance pattern on a distant target. Each of these effects is relatively well
understood in its own right, but the possible interactions are complex and numerical calculations of the full
system performance are frequently required to gain an understanding of the system performance. Figure
12.1 shows a representative system which might be used for laser communication. A laser beam is generated
on the ground. The beam is projected by a beam expander to a relay optic in space. In the uplink path, the
beam is affected by aberrations in the beam expander, the adaptive optic element, and atmospheric optics.
The adaptive optic is controlled to correct the aberrations observed in a downward path through the
atmosphere form a beacon placed on (or close to) the relay mirror platform. The relay optic intercepts the
beam and projects it to a distant focusing mirror. The finite relay mirror clips the energy distribution from
the ground-based laser. The relay mirror aperture acts to some extent as a spatial filter so that there is
relatively little preservation of the aberrations from the beam expander and uplink atmospheric effects.
These aberrations have their principal effect in reducing the energy transmission. The relayed beam is
projected to the focusing mirror by propagation through space.

The focusing mirror has aberrations due to intrinsic shape deformation and due to the effects of rapid
steering. If there is a long distance from the relay to the focusing mirror there will be a spatial filtering effect
similar to that of the uplink path to the relay mirror. It is generally most cost-effective to let the side lobes
of the diffraction pattern fall outside the aperture of the focusing mirror rather than require a larger aperture
for either the relay mirror or the focusing mirror. Because of spatial filtering effects of the uplink and relay-
to-focusing propagations and the mirror apertures, only the aberrations of the focusing mirror directly effect
the irradiance distribution at the target. Atmospheric aberrations in the downlink path have relatively little
effect on the target irradiance because the aberrations are added close to the target, essentially in the near
field of the target.

12.1 Atmospheric Aberration
The atmospheric turbulence model is based on an angular spectrum model which is readily implemented

and which is readily interfaced with the adaptive optics model. There is a lack of agreement among the
atmospheric experts with regard to proper treatment of atmospheric outer scale. This leads to uncertainty in
atmospheric tilt and piston error which is problematic for uncorrected systems and for large phased arrays
but not for adaptively corrected systems. Atmospheric aberration is described by the Kolmogorov spectral
distribution. The aberration is described by an integral over the altitude in the atmosphere[1].

, (12.1)W2 ρ( ) 0.38
λ2ρ11 3⁄------------------- Cn

2 h( ) hd
hmin

hmax

=
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where  is the refractive index structure constant of the atmosphere as a function of altitude, h is the
altitude in meters, ρ is the spatial frequency variable, λ is the wavelength, and  is the power spectrum
of the wavefront. We may characterize the aberration by the autocorrelation diameter, , sometimes known
as Fried’s parameter

. (12.2)

Fried’s parameter may then be used to calculate the wavefront

. (12.3)

The inner and outer scale may be included according to Lutomirski and Yura [2]

Fig. 12.1. Representative laser communication system showing the ground-based laser, the aberrations of the 
atmosphere, propagation to the relay mirror, aperturing by the relay mirror, propagation to the focusing mirror, and 
downlink propagation to a target on the ground.
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, (12.4)

where ρ is the spatial frequency,  is the outer scale, and  is the inner scale. These parameters are in
radians, meters, and inverse meters respectively.  is generally taken to be several meters and  to be on
the order of centimeters or less. From the relationships described above, we can see that it is possible to
characterize the atmospheric aberration by Fried’s parameter. It is natural therefore to separate the problem
of atmospheric characterization into three parts: 1) determination of the effects of various levels of
atmosphere in terms of , 2) summation of the ‘s, and 3) implementation of aberration using the 
parameter. The summation of the ‘s of different levels takes the form

. (12.5)

Propagation through N layers of equivalent aberration of , which might occur in horizontal propagation,
will result in

. (12.6)

Propagation over considerable distances is accomplished by taking short steps of simple diffraction
alternating with short steps of aberration introduction. Figure 12.2 illustrates schematically the procedure.

The number of steps depends on the magnitude and spatial frequencies of the aberration.  varies
with altitude. An approximate expression which is adequate for estimation purposes is

. (12.7)

Day time performance is about an order of magnitude lower. Consideration of Eq. (12.7) will reveal that
the most important factor is the height of the exit pupil of the telescope which sets the lower limit of the
integral. For a wavelength of  meters and the simplified expression for , Eq. (12.2) can be
evaluated. For a lower limit of  = 10 meters, cm. For day time conditions,  cm. The seeing
may be significantly improved by raising the height of the laser source and by designing the laser station to
minimize local turbulence. The  calculations are difficult and have significant uncertainties. For this
reason it is more convenient to develop our aberration expressions in terms of  and leave the calculation
of that parameter to the user to determine by experiment or by calculation.

An average height may be calculated by Eq. 12.8
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. (12.8)

This equation depends upon the upper limit of the atmosphere which is not well determined and which
really represents the point at which Eq. 12.7 ceases to be valid and the aberration falls off to zero. However,
Eq. 12.8 indicates that the most of the aberration occurs at relatively low altitude. The Strehl ratio is found
from the approximate expression

. (12.9)

Fig. 12.2. Schematic of propagation through the air where aberration and diffraction propagation must be considered. 
The propagation is done in relatively short steps with the diffraction propagation and addition of aberration alternated 
to achieve an approximation to a continuous process.
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The frequency spectrum falls off rapidly and we can identify a maximum such that frequencies above the
maximum need not be considered. Assuming a propagation distance of about 500 meters, the seeing
parameter is about  = 5 cm. Frequencies above 48 m-1 contribute only a 2 percent drop in Strehl Ratio.
The diffraction characteristic length is

meters. (12.10)

This would indicate the use of several levels: perhaps 10-500, 500-1,500, and 1,500-10,000 meters. The
aberration due to the atmosphere is a smoothed random wavefront. However it changes over time because
of beam steering and wind shear. This effect may be readily modeled by using Fourier transform methods
to shift the distribution. Given a wavefront of  and velocity components  and , the shift in the
atmospheric aberration with time is

, (12.11)

where FF indicates a two-dimensional Fourier transform. Figure 12.3 shows a typical atmospheric
aberration phase sheet with the wind blowing in the +x direction. Because of the cyclical nature of FFT
methods the aberration that disappears off one side reappears on the other. 

12.2 Adaptive Optics
Because of the high spatial frequencies present in the atmospheric aberration, any aperture of significant

size requires a large number of actuators ranging from several hundred to several thousand. Methods
developed for treating adaptive correction of thermal mirror distortion which employed tens of actuators and
which used individually specified influence functions for each actuator are neither practical nor necessary.
A zonal approach which uses an angular spectrum technique allows rapid calculation of the adaptive optic
correction. The method is shown to be traceable to the optimum least squares fitting approach and may be
used for steady-state influence functions or transient influence functions [Ref. 3–6,8–9].

Let  be points in the array and  be the influence function for the jth actuator. The mirror surface
may be described as the linear superposition of the influence functions

. (12.12)

This may be expressed in matrix and vector form

, (12.13)

where  and a are the wavefront and actuator coefficient vectors and the matrix. H is defined such that

. (12.14)
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Let the wavefront we intend to fit be . We attempt to fit the mirror to the wavefront for minimum
error

. (12.15)

The wavefront variance is

. (12.16)

The solution for minimum variance is the well known least squares solution [6],

, (12.17)

(a) No shift. (b) Shift of 2 cm.

(c) Shift of 4 cm. (d) Shift of 6 cm.

Fig. 12.3. Atmospheric aberration wavefront based on the Kolmogorov spectrum with a wind blowing in the x-
direction. It can be seen that the aberration which disappears off the +x edge reappears on the -x edge.
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where w is the wavefront to be fit. The best-fit wavefront is

, (12.18)

 where . (12.19)

For a typical case of 100 actuators and a square computer array of 64 × 64 points, direct evaluation of Eq.
(12.19) would require tens of millions of multiplications.

A particularly simple solution is possible when it is assumed that all actuators are identical. In this case 

, (12.20)

where  is the point to be calculated and  is the actuator location which is the center
of the influence function. The influence function we should use is the influence obtained by operation of the
adaptive mirror with the optimum control law. The influence function obtained by using the optimum
control law is the narrowest possible influence function. Mathematically, this is equivalent to
orthogonalization of the influence factors. The real influence functions are, in general, not orthogonal.
However, we can construct an orthonormal set from the original set. Let the orthonormal set have influence
function matrix  and coefficient vector , such that

. (12.21)

If we have the orthonormalized coefficients  we can determine the actual coefficients for the actuators
by

. (12.22)

In terms of the orthonormal matrix H′ the system matrix S is

. (12.23)

and Eq. (12.17) becomes

. (12.24)

This operation reflects the operation of the optimum actuator control law. We can find the orthonormal set
by the Grahm-Schmidt process. The Grahm-Schmidt process [7] assumes the function set to be ordered. The
jth orthonormalized influence function is
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. (12.25)

Figure 12.4 represents graphically the form of H′ and S. Figure 12.5 shows an isometric plot of a typical S
matrix formed from orthonormalized influence functions..

For an infinite array of actuator influence functions on a rectangular grid, the orthonormalization
process is modified. Since all influence functions are assumed to be identical, we need orthogonalize only
one influence function against its neighbors. Generally we will need to orthogonalize only to the nearest
neighbors or, at most, to the second nearest neighbors unless the mirror face plate is so stiff that the influence
function spans many actuators. Mathematically the orthonormalization process can be represented as

Fig. 12.4. Form of H′ and S. H′ is a rectangular matrix with each column representing the orthogonal influence 
function of one of the actuators. Except near the edges the columns are identical except shifted. S, the system matrix, 
has the form indicated on the right.
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, (12.26)

where Δx and Δy are the actuator spacings and N is the order of the neighbors considered. The ± sign
indicates that we are to include positive and negative values of the function shift in the summation. To
include only nearest neighbors, N = 1.

Equation (12.26) shows that the neighboring points are activated to remove the mirror movement to the
extent possible. The orthogonal function represents the condition where the actuator control law has been
used to minimize the width of the influence function for one actuator by manipulating the neighboring
actuators. The orthogonal influence function, therefore, represents the influence function of the actuator
under optimum control. Figure 12.6 shows schematically the uncontrolled and controlled, orthogonal
influence functions. 

In the remainder of this discussion, we shall assume that the influence functions have been
orthonormalized and drop the primes from the nomenclature for . Given m orthonormalized then the
appropriate equation is

Fig. 12.5. Isometric of typical S matrix formed from orthonormalized influence functions.

m′

m mm jΔx± kΔy±,( ) m jΔx± kΔy±,( )
k 1=

N


j 1=

N
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m mm jΔx± kΔy±,( ) m jΔx± kΔy±,( )
k 1=

N


j 1=

N

–

-----------------------------------------------------------------------------------------------------------------------=
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, (12.27)

. (12.28)

Consider the case of relatively fine sampling of the wavefront such that there are many sample points
between actuators. In which case H is a high aspect ratio rectangular array with many more rows than
columns. Since  consists of a series of identical influence functions which are shifted to have their centers
at the locations of the actuators, the actuator position equation Eq. (12.24) may be written as a convolution
of the actuator functions with the wavefront sampled by a comb function formed from the actuator spacing:

, (12.29)

where actuator differences near the boundaries are ignored. The above relationship derives from the fact that
all influence functions are identical. This point may be more clear by considering a one-dimensional
example. Eq. 12.30 illustrates the appearance of the matrix-vector operations for one-dimension. The
coefficients of the actuator are the dot products of the wavefront with the shifted influence functions.

. (12.30)

Fig. 12.6. The uncontrolled influence function (left) is found by moving one actuator and keeping all other actuators 
fixed (assuming position actuators). The controlled influence function (right) is somewhat narrower because the 
neighboring influence functions are moved to oppose the effect of the central actuator. The controlled influence 
function is orthogonal to its neighbors.
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Similarly

, (12.31)

where  is a delta function at point .
The net result of  is

. (12.32)

In frequency space this is

. (12.33)

In frequency space the error function is

. (12.34)

If the wavefront is sampled by a detector of finite area  then Eq. (12.32) is modified to be

(12.35)

and the error function becomes

. (12.36)

The convolution in frequency space result in aliasing which represents printthrough of the actuators—a
significant effect if the actuator spacing is too large for the mirror stiffness.

Figure 12.7 illustrates the spatial and frequency space aspects of the adaptive mirror process. The
original wavefront is illustrated in the top of the figure. In general we can expect a mixture of high and low
spatial frequency errors in the wavefront. The influence function is illustrated as a gaussian-like function.
Because of orthogonalization the function dips below the axis to remove the effects of the adjacent influence
functions. Convolution of the wavefront by  smooths out the high spatial frequencies. 

The actuators exist at discrete points separated by Δx and Δy. The coefficients are represented by delta
functions of varying height. In the spatial domain, the smoothed wavefront is multiplied by the appropriate
comb function. In frequency space, the damped frequency function is convolved by the Fourier transformed
comb function, which is itself a comb function. The convolution of the comb function may be considered
as a series of the damped frequency functions. These functions will, in general, overlap resulting in aliasing.
The overlap is the result of the influence functions being too narrow or their spacing being too wide. This
will occur if the faceplate of the active mirror is not sufficiently stiff. The effect is sometimes referred to as
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actuator print through. To make maximum use of a given number of actuators it will be best to design the
faceplate stiffness to allow some print through. The actuator coefficients multiply the influence functions
centered at the actuator locations. This may be represented by a convolution of the actuator delta functions
by the influence functions. Figures 12.8a–12.8d show examples of orthogonalized influences functions in
the spatial and frequency domains for various coupling percentages between neighboring actuators: 5%,
15%, and 50%. 

In frequency space this is a multiplication again by the Fourier transform of the influence function.
However, some of the aliased information is left in the frequency pass band. The residual errors are
represented by the difference between the adaptive mirror and the original wavefront. The residual

Fig. 12.7. Spatial and frequency space representations of the functional steps in the adaptive optic modeling. The 
original wavefront and influence functions are shown. Convolution by the influence function and subsequent 
sampling at the actuator spacing gives the coefficients of the influence functions. The coefficients establish the size 
of the influence functions at the actuator points. The frequency space representation shows aliasing in the frequency 
domain which translates into printthrough in the spatial domain. The residual wavefront shows the effects of high 
spatial frequencies which can not be corrected by the actuators and printthrough at the period of the actuator spacing.

SPATIAL DOMAIN FREQUENCY DOMAIN

original wavefront
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m x( )
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Fig. 12.8a. Influence function with 5% coupling. Fig. 12.8b. Fourier transform of influence function with 
5% coupling.

Fig. 12.8c. Influence function with 15% coupling. Fig. 12.8d. Fourier transform of influence function with 
15% coupling.

Fig. 12.8e. Influence function with 50% coupling. Fig. 12.8f. Fourier transform of influence function with 
50% coupling. Nearly a rect function.
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wavefront consists principally of the high spatial frequencies (the part of the original wavefront which falls
outside the spectral band of the influence function) and the print through effects and the period of the
actuators.

The model described above will provide a good approximation to the full least squares influence
function fitting model provided the actuators fall upon a rectangular grid. The principal errors are on the
perimeter of the mirror where the actuator performance is likely to be affected by the boundary of the mirror
and, therefore, will not satisfy our condition of identical actuators. Alda and Boreman have extended this
model to include edge effects [9]. For a stiff faceplate and an ideal control system, the controlled influence
function is

. (12.37)

Figures 12.9.a shows an example of aberration correction by an adaptive mirror. Figure 12.9.a shows a
wavefront with atmospheric aberration. Figure 12.9b shows the residual wavefront after low order
aberrations are removed by the adaptive optic. High spatial frequencies remain which are of relatively low
amplitude. 

12.3 References
1. Roddier, “The Effects of Atmospheric Turbulence in Optical Astronomy,” E. Wolfe, Ed., Progress in

Optics XIX, North-Holland (1981).

2. Lutomirski and H. T. Yura, “Aperture Averaging Factor for a Fluctuating Light Signal,” J. Opt. Sac.
Am., Vol. 59, No. 9, pp 1247-1248 (1969)

3. James E. Harvey and Gary M. Callahan, “Wavefront Error Compensation Capabilities of Multi-
Actuator Deformable Mirrors,” SPIE Proc. 141, 50 (1978).
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Fig. 12.9.a. Wavefront before correction. Fig. 12.9b. Wavefront after correction.
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13. Thermal Blooming  

In this section, the effects of atmospheric absorption of a high power beam and the resulting laser
heating (or cooling) of the atmosphere are described. As the beam heats the atmosphere the index of
refraction is altered. The net effect is to change the direction and the degree of convergence of the beam.
Much of the original work was done in the US in the 1970's and was rather completely documented in the
open literature at that time and it is from this body of work that the techniques described here were
developed. References [1–5] fully describe the scientific and technological basis of the thermal blooming
model. Reference [1] by Charles B. Hogge and Ref. [2] by Strohbehn provides a comprehensive description
of thermal blooming as applied to high power CO2 lasers. Reference [3] by Wood, Camac and Gerry is a
good source of optical properties of the atmosphere. Reference [4] is a thorough discussion of thermal
blooming and addresses the particular problem of imaging through the perturbed atmosphere. Reference [4]
includes a complete listing of HELPRP which incorporates the thermal blooming models of the other HELP
codes. References [5] and [6] are standard US references on properties of the atmosphere. Reference [7] is
a convenient computer program based on Reference [6] from which some parts of the GLAD atmospheric
routines were adapted. Reference 8 is a standard reference for the physical and optical properties of air.

The basic effects to be included are listed in Table 13.1. Given the altitude, the code will calculate the
temperature, pressure, index of refraction, and absorption of the atmosphere. The absorption of nitrogen and
carbon dioxide are broken out separately to enable the effects of kinetic cooling to be included. Kinetic
cooling is a transient phenomena in which, if the conditions are right, the gas is initially cooled by CO2
absorption of light and then heated as the stimulated states of CO2 spread to N2 and then decay thermally.
The effect may be important if the beam is crossing through the air very rapidly. The effect may reduce or
reverse the thermal defocusing of the atmosphere. The user may also explicitly define the atmospheric
parameters rather than use the values calculated by GLAD. The attenuation effects of the atmosphere are
included as well as the phase perturbations due to temperature change in the air. The relative rate at which
the beam crosses through the air due to wind and beam steering may be specified. The phase change causes
the beam to change its degree of convergence, direction, and amount of aberration. The code will test for
excessive growth of the beam within the bounds of the computer array and automatically rescale and
recenter the beam as required. 

Table. 13.1. Thermal blooming features.

• automatic calculation of the state of the atmosphere vs. altitude
• user explicit specification of atmospheric parameters
• absorption due to water and carbon dioxide
• phase perturbations due to kinetic heating and cooling
• beam shear effects from wind and beam steering
• automatic resizing and centering of the beam in the computer array
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13.1 Mathematical Derivations and Techniques
In order to calculate the aberrations of an optical beam induced in the atmosphere by self heating, it is

necessary to solve two major problems: 1) the change in index of the air due to absorbed power and 2) the
transverse profile of the temperature changes. One of the key aspects of the problem is the beam crossing
time. The beam crossing time, , is the time for the atmosphere to sweep past the beam due to the
combined effects of beam steering and wind. In performing these calculations we shall make the following
assumptions:

• The beam has been on for at least one beam crossing time,
• The beam crossing time is finite. Completely stagnant air is not modeled,
• Transient phenomena have time constants less than the time for sound to cross the beam,
• The speed of sound is approximately 330 m/sec at standard temperature and pressure (STP),
• The temperature distribution is “frozen” into the air.,No movement of heat is considered.
• Only 10.6 μ effects are considered,
• The beam crossing rate is constant over one beam crossing time.
The thermal blooming effects will become infinitely large if completely stagnant air is modeled because

of factors of 1/v that appear in the equations derived below. In practice heat would dissipate out of the beam
area by convection and conduction but the beam would be so disrupted by the extreme heating that the beam
quality would degenerate to the point of being useless. Because the approximations used here do not allow
for conduction or convection, the heat is considered to be frozen in place where it is deposited by the laser
beam. This frozen distribution passes across the beam because of the differential rates of beam steering and
wind as laser power is continually absorbed. The deposited energy is smeared into the atmosphere in much
the same way that a pen puts ink down on paper.

The heating of the atmosphere causes the gas to expand at constant pressure. The expansion takes place
at the rate of the sound propagation in the air. As the volume increases the density drops proportionally. The
equation for index change is given by Eq. 13.1 from Reference [1]

, (13.1)

where P is in millibars and T is in degrees Kelvin. The equation may also be written

, (13.2)

where  is the relative atmospheric pressure and  is the relative temperature with respect to standard
temperature and pressure (STP) and  is the index of refraction at 10.6 μ and STP,  = 1.000274[6]

, (13.3)

 is the index of refraction air at STP,
Relative pressure,
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Relative temperature with respect to 288 K,
ΔT Temperature rise due to absorption,
T Temperature of the atmosphere,
Δz Propagation step length,
λ Wavelength.
The next step is to determine the temperature rise. The attenuation of the beam is characterized by the

loss coefficient α km-1 which includes all losses. For 10.6 μ radiation the principal loss is due to absorption
by water vapor, carbon dioxide, and other components of the atmosphere. It is assumed that scattering plays
a negligible role and that all of the attenuation is due to energy absorption. The computation of the
temperature rise is the most difficult part of the problem. In simple form, the equation for temperature to be
solved is

, (13.4)

where
α is the attenuation constant [m-1],

ρ is the density [kg/m3],
is the irradiance [w/m2],

C is the absolute specific heat [J/kg/deg],
τ is the time.
The integration limits are  to 0, but the irradiance  is zero after approximately one beam 

crossing time. This point is clear from the description in terms of time and position is

, (13.5)

where the spatial shifts  and  are defined by

, (13.6a)

, (13.6b)

net components of velocity,
components of wind velocity,
components of target velocity,

s slant range of the current beam position,
slant range of the target.

For sufficiently short intervals of Δz along the optical path, the slant range does not vary significantly
and the velocity components may be considered constant over that interval. As shown above, the
temperature is based on the time integration of the beam moving in the atmosphere. We may disregard the
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times sufficiently far back that no part of the beam overlaps the position of interest. A practical limitation
is that the edge of the computer array defines the most distant time to be considered. Consequently the time
integration may begin at approximately one beam crossing time in the past. For a computer array of sides N
and sample spacing of Δx the crossing time is approximately

, (13.7)

where v is the beam crossing velocity. For reference, some of the properties of air are listed in Table 13.2. 

Under proper conditions, a CO2 laser beam may cause kinetic cooling. This occurs as a transient
condition when the CO2 absorption in the atmosphere is significant. According to Reference [1], as the CO2
molecule absorbs radiation in going from the (1000) state to the (0001) state, energy is absorbed from the
vibrational (1000) level. Consequently (1000) is no longer in thermal equilibrium and the state is
repopulated quickly by taking energy out of the translational energy reservoir. The process results in an
immediate drop in temperature. Ultimately the energy in the (0001) state distributes its energy into the first
vibrational state of nitrogen. The excited nitrogen atoms decay slowly through any of the available routes,
so that for some modest period of time the effect of the laser is to cool the gas. Since a typical value for the
nitrogen decay time constant is  sec., the kinetic cooling may be a factor if the beam crossing
time is less than the nitrogen decay time

. (13.8)

This condition may occur for fast beam steering resulting in a cancellation or reversal of the usual
kinetic heating effect. Kinetic cooling is incorporated by Hogge into the equations as shown below. Let

 and  be the absorption coefficients of water vapor and carbon dioxide respectively. Then the
total absorption is

, (13.9)

. (13.10)

The full equation including kinetic cooling is

Table. 13.2. Physical and optical constants for air.

index of refraction (10.6 μ)
density [kg/m3] 1.226
conductivity [w/mK] 0.02525
specific heat [J/kgK] 1017
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, (13.11)

α total atmospheric coefficient = ,
ρ density of air 1.226 kg/m3,

specific heat 1017 J/kgK,
τ time variable,

time constant of nitrogen for kinetic cooling,
σ  kinetic cooling factor, Eq. (13.10).
The integral over time may be accomplished by performing a moving average over the irradiance

distribution. For general components this requires an interpolation step across matrix lines which is
numerically noisy. When kinetic cooling is negligible, a particularly smooth way to do this is to perform the
moving average by doing the integration in the frequency domain.

13.2 Blooming Algorithms
There are three basic forms in which the calculation may be performed. We shall use two constants in

each case:

(13.12)

and σ from Eq. (13.10)
1) Convert from complex amplitude to intensity and phase

. (13.13)

2) Calculate wavefront change

. (13.14)

3) Convert from intensity and phase to complex amplitude

. (13.15)

This is the default method and is considered the most reliable.
bloom/prop/xonly

If the crossing velocity is strictly along the x-direction considerable speed improvements are possible.
The thermal blooming and kinetic cooling are based on two sums taken over the array. The code scans in
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the x-direction then the y-direction because data is stored contiguously along the rows. The intermediate
sums are:

Intensity sum: , (13.16)

kinetic cooling sum with temporal decay: , (13.17)

represented as a series: 

. (13.18)

The exponentials may be eliminated by using an intermediate value

, (13.19)

, (13.20)

The computer coding takes the form

, (13.21)

. (13.22)
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The temporal integration may be performed in the frequency domain. This method avoids the spatial
domain shifting which is rather time consuming. The Fourier method is derived below:
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, (13.24)

, (13.25)

, (13.26)

. (13.27)

We choose  to be the time that results in the beam being 1/4 of the array width from the center.
Choosing a larger value will result in “wrapping” of the intensity distribution. There is still some slight
wrapping with the current algorithm. Wrapping effects are minimized by windowing the intensity
distribution to the inner one-half rectangle. The phase calculations are followed by an internal call to
fitphas to remove tilt and focus error and to invoke a diffraction propagation. If Nstep is specified then
successive steps of kinetics and diffraction will be used—each of length Z/Nstep. The tilt and focus terms
are removed by fitting the aberration polynomials to the wavefront. The first step is to convert from complex
amplitude to intensity and phase according to Eq. (13.13)

Form the inner products of the wavefront with the four lowest order Zernike polynomials and of the four
lowest order polynomials with each other

. (13.28)

The equation to be solved to determine the coefficients  is
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, (13.29)

where the inner product is defined to be

, (13.30)

so that the inner product is a function of the irradiance distribution. These functions will, in general, not be
orthogonal over the particular distribution. This equation is solved and the low order terms are removed.
The intensity and phase are then converted back to complex amplitude by Eq. (13.15).

It is interesting to observe that the development above does not require the use of gain sheets or of
explicit time treatment. This greatly speeds the computation and simplifies the programming. Figure 13.1.a
shows the phase distribution due to thermal heating with wind blowing in the -y direction. The heated air
stretches from the center to the -y edge. The phase distribution is shown after being fitted for tilt and focus.
Since the fit of Eq. (13.30) is over a gaussian distribution in the center of the array, the tilt and focus are
best-fit over that area and show significant tilt and focus error outside that region. Fig. 13.1b show the
characteristic “sugar scoop” effect with the formation of a satellite hot spot down stream from the wind. 

Fig. 13.1.a. Phase after a step of thermal blooming. The 
wind is blowing in the -y direction, causing a trough in 
the phase. The heated air acts to diverge the light. The 
tilt and focus have been best-fit over the center of the 
array where the gaussian beam intensity is significant, 
causing the phase outside the beam to show tilt and 
focus error.

Fig. 13.1b. Intensity distribution after propagation with 
thermal blooming. The initial distribution was gaussian. 
The “sugar scoop” is a characteristic feature as is the 
secondary peak which forms down stream.
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14. Polarization

The state of polarization plays an important role in determining the performance of optical systems. A
uniform polarization state across the pupil is a requirement for achieving good beam quality and for
optimum coherent combination of beams. Many optical components alter the polarization state of optical
beams. In a complex optical system, with three-dimensional folds and tilted components, the polarization
state can be altered significantly as it passes through the system. Most importantly, the different areas of the
aperture may be affected differently if the incidence angles are different, which lowers the beam quality and
focusability of the beam. The GLAD code, in its present form, treats light as being strictly monochromatic.
Monochromatic light, is of necessity, perfectly polarized. Partial polarization requires a finite spectral
bandwidth with varying polarization states in the different spectral components. For full polarization, the
polarization state at any point in the aperture may be represented by 2-vectors and the transformations by

 matrices, rather than the more complex 4-vectors and  Mueller matrices required for partial
polarization. By convention, the field at a given point in space is

, (14.1)

where  and  are unit vectors in the x- and y-directions. In keeping with the use of beam coordinates ,
, and , which move with the beam. We shall use

, (14.2)

where  are calculated along the local unit vectors  and . This allows the beam to rotate as a unit
without changing the apparent state of polarization. In column vector form, the optical field is 

. (14.3)

We show several typical Jones vectors in Table 14.1. The sense of circular polarization is right handed if
clockwise when viewed looking back down the direction of propagation. The polarization state may be
modified by a large variety of components, but all possible polarization alterations effects may be
characterized by a  matrix, called the Jones matrix

, (14.4)

2 2× 4 4×

E x y,( ) Ex x y,( )x̂ Ey x y,( )ŷ+=

x̂ ŷ î
ĵ k̂

E x y,( ) Ex x y,( ) î Ey x y,( ) ĵ+=

x y,( ) î ĵ

E x y,( )
Ex x y,( )
Ey x y,( )

=

2 2×

J j11 j12

j21 j22

=
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where the elements are complex coefficients. The 4 complex elements account for 8 degrees of freedom.
Following Hecht[2], we show several typical Jones matrices in Table 14.2. 

14.1 Rotation of Polarization Components
The Jones matrices may be rotated to represent the effect of a rotated polarization active component by

, (14.5)

where

. (14.6)

A clockwise rotation is assumed to be positive. Using the rotation matrices, we can define any polarizer and
retarder in terms of a rotated vertical polarizer and a rotated vertical fast axis retarder

rotated vertical polarizer = , (14.7)

Table. 14.1. Common polarization states.

x linear polarization

y linear polarization

+45º linear polarization

–45º linear polarization

right circular polarization

left circular polarization

1
0

0
1

2
2-------

1
1

2
2-------

1
1–

2
2-------

1
j–

2
2-------

1
j

Jrotated R θ( )JR 1– θ( )=

R θ( ) θcos θsin
θsin– θcos

=

R θ( ) 0 0
0 1

R 1– θ( )
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rotated vertical fast axis retarder = . (14.8)

The right and left circular polarizers are not affected by rotation.

14.1.1 Distributed Effects
For polarization effects that take place in a distributed manner during propagation through a material,

the Jones matrix procedure may be modified to take the form

, (14.9)

where the elements of J have units of inverse distance. Equation (14.9) may be integrated to give 

Table. 14.2. Typical Jones matrices.

x linear polarizer

y linear polarizer

 linear polarizer at +45º

 linear polarizer at –45º

quarter-wave plate, vertical fast axis

quarter-wave plate, horizontal fast axis

right circular polarizer

left circular polarizer

1 0
0 0

0 0
0 1

1
2---

1 1
1 1

1
2---

1 1–
1– 1

e
jπ
4--- 1 0

0 j–

e
jπ
4--- 1 0

0 j

1
2---

1 j
j– 1

1
2---

1 j–
j 1

R θ( ) e
jψ
2---- 0

0 e
jψ
2----–

R 1– θ( )

z∂
∂E JE=
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. (14.10)

The exponential of the Jones matrix is an operator, which may be evaluated by a series expansion of matrix
elements. Consider a matrix A; the exponential is

. (14.11)

14.2 Common Polarization Effects and Components
In this section, many common types of components are considered which can alter the polarization state. 

14.2.1 Birefringence
Many crystals are anisotropic, i.e., they have different properties in different directions. Such crystals

have different indices for different polarization states and different directions of propagation. The current
treatment in the GLAD code is limited to uniaxial with the crystal axis perpendicular to the propagation
direction. In this case, we can consider a fast axis and slow axis for the crystal. It is common to consider an
ordinary and extraordinary direction and associated indices  and , such that . Since light travels
faster in the lower index, the fast axis corresponds to the extraordinary ray.

In the more general treatment of crystal axis orientation, the ordinary and extraordinary rays propagate
in different directions. This induces a shearing in the beams which is not, at present, considered in the
GLAD program. With the optical axis perpendicular to the direction of propagation, the birefringent
material acts as a retarder. The equation for retardance is

. (14.12)

With the fast axis vertical, the Jones matrix is given by Eq. 14.8.

14.2.2 Mirror
The beam matrix is transformed by a plane mirror such that (see Eq. (11.45a)),

(14.13)

This operation flips the parity of the beam. The Jones matrix for a reflector is simply,

Jones matrix for reflection = . (14.14)

E Δz( ) eJΔz=

eA Ak

k!------
k 0=

∞

=

no ne no ne>

Δψ 2π
λ

------d no ne–( )=

î′ ĵ′ k̂′ î ĵ k̂ 2 î n̂⋅( )n̂ ĵ n̂⋅( )n̂ k̂ n̂⋅( )n̂–=

1 0
0 1
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The complex amplitudes  and  remain unchanged but the direction of the  changes with respect to 
and . This reverses the definition of left and right circular polarization. The parity of the beam is defined
by (See also Eq. (11.116)).

. (14.15)

If Eq. (14.13) is positive the parity is right-handed and left-handed if negative.

14.2.3 Optical Activity
Optical components which cause a rotation of the orientation of linear polarization are called optically
active. Crystalline quartz, sugar solutions, tartaric acid, and turpentine exhibit optical activity. If the rotation
is clockwise it is termed d-rotatory and termed l-rotatory if counterclockwise. This is due to different
retardance of left and right circular polarization. The angle of rotation, relative to the direction of
propagation, is determined from the equation[4],

, (14.16)

d propagating direction vector (cm),
axis of crystal,
index of left circular light,
index of right circular light.

The Jones matrix for optical activity is

. (14.17)

With optical activity the polarization rotates with respect to the direction of propagation. Propagation
through the material followed by reverse propagation after reflection from a mirror will result in
cancellation of the effects because the angle  is taken with respect to the direction of optical propagation,
which is reversed in a backward pass. This is comparable to the rotation associated with advancing along a
mechanical screw. A forward advance along a right handed screw followed by backward propagation would
result in zero net rotation.

14.2.4 Faraday Effect
Faraday discovered that application of an external magnetic field could cause a rotation of the

orientation of linear polarization. The governing equation for the Faraday Effect is

, (14.18)

d propagation direction vector (cm),

Ex Ey k̂ î
ĵ

k̂ î ĵ×( )⋅

θk
π
λ
--- d ẑ⋅ nL nR–( )=

ẑ
nL
nR

R θk( )
θk( )cos θk( )sin
θk( )sin– θk( )cos

=

θk

θk V B d⋅( )=
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V Verdet constant,
B magnetic flux vector density (gauss).
A positive sign of the Verdet constant is, by convention, l-rotary. The Faraday effect is similar to optical 

activity except that the angle accumulates in the backward propagation direction. The direction of rotation 
of the phase always follows the direction of rotation of current in a coil that would generate the B field. The 
angular direction of rotation reverses with a change in propagation direction. If a mirror is used to reverse 
the direction of the beam, the handedness of the circular polarization will be flipped with the flip in direction 
and successive passes will enhance the effect. We can use the same rotation matrix, Eq. 14.17, for the 
Faraday effect provided the sign is flipped after each mirror flips the circular parity.

14.2.5 Kerr Effect
An isotropic material becomes birefringent when placed in an electric field. We define  and  as the 

indices of light parallel and normal to the applied field. This may be viewed as a uniaxial crystal with optic 
axis parallel to the applied field where  and  are analogous to  and . The difference in index, 

 has the equation

. (14.19)

Hecht lists a number of Kerr constants for various materials. Alternatively we can represent the Kerr cell in
terms of the phase retardance and the orientation of the fast axis.

The Kerr cell can be formed by sandwiching a half-wave Kerr cell between two linear polarizers at 0
and 90 degrees respectively. Incident vertically polarized light will be completely blocked when the
retardance is zero and completely passed into the horizontal polarized state when proper voltage is applied
to the Kerr cell. The expression for a Kerr cell blocking vertical polarization when off and converting
vertical to horizontal polarization when on is represented mathematically by Eq. 14.20

Kerr cell = . (14.20)

The leading factor constant phase factor is of no consequence since it is a piston error. ψ takes on the values
0 and π/2 for off and on.

14.2.6 Pockels Effect
The Pockels effect produces retardance based on the voltage of the applied field[4],

, (14.21)

where  is the ordinary index of refraction,  is the electro-optic constant, V is the voltage, and λ is the
wavelength. The Pockels effect may be used to build a Pockels cell which works similarly to the Kerr cell.
While there are important practical differences between Kerr and Pockels cells both may be modeled by Eq.
14.21.

np nn

no ne np nn
Δn nn np–=

Δn λ0KE2=

j ψ
2---- 

  0 1
0 0

sin

Δψ 2πn0
3r63

V
λ
---=

no r63
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14.3 Polarization Aberrations
In the previous section, several different types of polarization modifying components were discussed. This
section addresses polarization effects in terms of polarization aberrations. This formalism is particularly
suited to treating effects based on angle of incidence such as arise when beams strike refractive, reflective,
or grating surfaces. In most cases these incidence angles are relatively small and the polarization affects are
relatively weak. A power series development is well suited to representation of these effects. Under
conditions of grazing incidence, the power series may not be a convenient representation, at least as an
expansion about the normal to the surface. The polarization aberration formalism was developed by Russell
Chipman several years ago and has achieved wide acceptance[3]. Chipman used a Taylor series expansion
to represent effects of Fresnel reflections and thin films based on the incidence angle. In the most general
form, the series expansion is

. (14.22)

If the interface is isotropic, i.e., if the interface appears unchanged as it is rotated about the surface
normal, only even terms need be used. Fresnel reflection is isotropic and Chipman argues that most thin film
coatings are isotropic. Gratings and holograms are not isotropic with respect to the surface normal but are
with respect to the grating vector, which is the important factor in determining the grating performance. A
grating on a refractive or reflective surface can be treated as two separate calculations: one for diffraction
and one for the surface refraction or reflection. The expansion in even powers of the incidence angle is

. (14.23)

The incidence angle is defined to be

. (14.24)

Under this definition, the incidence angle is always positive. However the orientation of  changes
depending on the direction of  if it is moved through the normal in a constant plane of incidence. The
polarization properties are defined with respect to the s- and p-directions (See Chap. 11 for a discussion of
the surface coordinate system). The direction of the p-vector component flips if the incident ray vector is
flipped about the normal in the plane of incidence. As mentioned above, grating properties are defined with
respect to the grating unit vector, a vector normal to the grating lines. For holograms or curved gratings, the
grating unit vector is defined for the local condition where the chief ray meets the grating.

14.3.1 Pauli Spin Matrices
The polarization aberrations may be developed in terms of the Pauli spin matrices

J i( ) Jkik

k 0=

∞

=

J i( ) J2ki2k

k 0=

∞

=

i cos 1– k̂ n̂⋅( )=

p̂
k̂
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, (14.25)

where the c’s are complex coefficients. And the Pauli spin matrices are

, , , . (14.26)

The incidence angle and direction varies across the surface. The incidence angle, considering only the
geometric properties, is

, , (14.27)

where  and  are the radii of the general toric surface and  and  are the tilt angles of the surface
(measured in a counter-clockwise direction). The properties of the surface may be represented by a power
series in , where . Consider the case of zero azimuthal angle. The zero and second orders of
the power series expansion are

. (14.28)

If the incident angle is rotated azimuthally an angle θ, each of the Pauli spin matrices are rotated by
  and  are invariant with respect to rotation,

, (14.29)

. (14.30)

The rotated polarization matrix is

J ckσk
k 0=

3



σ0

σ1

σ2

σ3

c0

c1

c2

c3

⋅= =

σ0
1 0
0 1

= σ1
1 0
0 1–

= σ2
0 1
1 0

= σ3 j 0 1–
1 0

=

ix
x

Rx
-----– Tx–= iy

y
Ry
-----– Ty–=

Rx Ry Tx Ty

i2 i2 ix
2 iy

2+=

J

A00e
jP00 i2A20e

jP20+ 
 σ0

+ A01e
jP01 i2A21e

jP21+ 
 σ1

+ A02e
jP02 i2A22e

jP22+ 
 σ2

+ A03e
jP03 i2A23e

jP23+ 
 σ3

A0k i2A2k+ 
 σk

k 0=

3

= =

R θ( )σR θ–( ) σ0 σ3

R θ( )σ1R θ–( ) 2θ( )σ1cos 2θ( )σ2sin–=

R θ( )σ2R θ–( ) 2θ( )sin σ1 2θ( )cos σ2+=
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, (14.31)

. (14.32)

The trigonometric quantities are

, . (14.33)

Summing all 

. (14.34)

Given the matrix J, we can compute the c-coefficients,

, (14.35a)

, (14.35b)

, (14.35c)

. (14.35d)

J

A00e
jP00 i2A20e

jP20+( )σ0

+ A01e
jP01 i2A21e

jP21+( ) 2θ( )σ1cos 2θ( )σ2sin–( )

+ A02e
jP02 i2A22e

jP22+( ) 2θ( )sin σ1 2θ( )cos σ2+( )

+ A03e
jP03 i2A23e

jP23+( )σ3

=

c0

c1

c2

c3

A00e
jP00 i2A20e

jP20+

A01e
jP01 i2A21e

jP21+( ) 2θ( )cos A02e
jP02 i2A22e

jP22+( ) 2θ( )sin+

A02e
jP02 i2A22e

jP22+( ) 2θ( )cos A01e
jP01 i2A21e

jP21+( ) 2θ( )sin–

A03e
jP03 i2A23e

jP23+( )

=

2θ( )cos
iy
2 ix

2–

iy
2 ix

2+
--------------= 2θ( )sin

2ixiy

iy
2 ix

2+
--------------=

cjσj

J c0 c1+ c2 jc3–
c2 jc3+ c0 c1–

=

c0
1
2--- j11 j22+( )=

c1
1
2--- j11 j22–( )=

c2
1
2--- j12 j21+( )=

c3
1
2--- j12 j21–( )=
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14.3.2 Polarization Representation in GLAD
The myriad polarization modifying effects and components can be represented by a relatively small set of
polarization routines. Table 14.3 lists the current set of capabilities. The general Jones matrix allows
definition of any polarization modifier. The general distributed Jones operator allows definition of any
distributed polarization operation. Although any polarization component is treatable by definition of the
general Jones matrix it is convenient to be able to specify many of the common devices. Linear and circular
polarizers are specifiable as well as various retarders. Optical activity and Faraday rotators are specifiable.
They produce a rotation of the polarization state and are differentiated by the sign of the rotation being
reversed for left-handed parity in optical activity. Kerr and Pockels cells are optical switches. Polarization
aberrations may be defined in terms of a power series in incident angles with general Jones matrix
coefficients. 

14.3.3 Polarization Effects of Surfaces
In this section the modeling of the effects of surfaces for refraction and reflection is discussed. We

consider the effects due to Fresnel or single layer file coefficients at a surface.

Table. 14.3. Typical Jones matrices.

general Jones matrix operator

general distributed Jones operator

rotated vertical polarizer
 

right and left circular polarizers
 , 

rotated vertical fast axis retarder

rotation due to optical activity or Faraday rotation

Kerr and Pockels cell

polarization aberration
x

J j11 j12

j21 j22

=

eJΔz

R θ( ) 0 0
0 1

R θ–( )

1
2---

1 j
j– 1

1
2---

1 j–
j 1

R θ( ) e
jψ
2---- 0

0 e
jψ
2----–

R θ–( )

R θk( )
θk( )cos θk( )sin
θk( )sin– θk( )cos

=

j ψ
2---- 

  0 1
0 0

sin

J i( ) J2ki2k

k 0=

∞

=
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14.3.3.1 Paraxial surface angle treatment
The incidence angles are computed using a combination of real and paraxial angles,

, , (14.36)

where Radx and Rady are the radii of the reference surface of the incident beam, Rx and Ry are the radii of
the surface, Tx or Ty is the tilt angle of the vertex, and  and  are the incidence angles, as defined in the
description of jsurf in the GLAD Commands Manual. Tx and Ty may be large angles and are specified
in degrees and defined to be rotation about the x- or y-axis respectively. Only one of Tx or Ty may be
specified, see Fig. 14.1. The surface coordinates x and y and the surface radii Radx and Rady determine
paraxial angles which are combined with the real angles Tx or Ty. In transmission a finite value of Tx or Ty
results in anamorphic magnification, which is implemented by a change in units. The index is set to the
substrate index at the end of propagation. 

The total incidence angle is

. (14.37)

Fig. 14.1. jsurf allows a large tilt angle in either the x- or y-directions and paraxial angles due to surface curvature 
as shown by angle vector plots shown on the right for Tx (top) and Ty (bottom). The pupil is indicated by a circular 
region. Tx and Ty are real angles measured as rotations about the x- or y-axes. The angles due to surface curvature 
are treated as paraxial angles.

ix x 1
Radx------------ 1

Rx* Ty( )cos-------------------------------+ 
  Ty+= iy y 1

Rady------------ 1
Ry* Tx( )cos-------------------------------+ 

  Tx+=

ix iy

angle vector plot for finite Ty

Ty

�
�

Tx

Ry

� ��( )���⁄

Tx

angle vector plot 
for finite Tx

��
�

i ix
2 iy

2+=
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14.3.3.2 General treatment of azimuthal angles in global space
In this section, the surface projections of incident electric fields on a general surface orientation are

developed. Assume incident radiation with transverse electric fields of Ei and Ej in coordinate system
[i, j, k]. We need projections into the surface coordinate system with [s, p, n] to find Es and Ep. We will
calculate the vector orthogonal to the intersection plane s based on the intersection of the ray vector k with
the surface normal n:

(14.38)

establishes  and therefore is in both the i-j plane and the plane of the surface.
The sines and cosines of rotation may be found from

, . (14.39)

We can now find the e-fields in the azimuthally rotated coordinate system Es and Ep:

. (14.40)

Further we have the rotation angle φ = atan2(s,c)—the extended arc tangent function.
If s is reversed in sign, the off-diagonal elements will also be reversed in sign.

. (14.41)

to give the values of the reflected or refracted e-fields.

14.3.3.3 Fresnel transmission and reflection in surface coordinates
The exiting ray will be real if the incident angle is below the critical angle, or imaginary if the angle is larger
than the critical angle.

(14.42)

where . The incident and exiting media are n and , for the Fresnel surface operations.
For incident angles below the critical angle, the Fresnel transmission coefficients are

ŝ k̂ n̂×
k̂ n̂×
---------------=

ŝ k̂⊥

s î ŝ× k̂⋅= c î ŝ⋅=

Es

Ep

c s
s– c

Ei

Ej

=

Ei'
Ej'

c s–
s c

rs 0
0 rp

c s
s– c

Ei

Ej

rsc
2 rps2+ c– s rp rs–( )

c– s rp rs–( ) rss
2 rpc2+

= =

i′( )cos
1 n

n′
---- 
  2

sin2 i( )– 
  1 2⁄

for i ic<  below critical angle

j n
n′
---- 
  2

sin2 i( ) 1– 
  1 2⁄

for i ic>  total internal reflection








=

ic sin 1– n′( ) n⁄( )= n′
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,  (TIR), (14.43)

,  (TIR), (14.44)

 or , (14.45)

The Fresnel reflection coefficients are

, (14.46)

, (14.47)

where  and  include index of refraction factors. Equations (14.46) and (14.47) are the general solutions
for reflection and may be applied to ordinary reflection and total internal reflection (TIR) by including the
complex value of  from Eq. (14.42). In the special case of  being nonabsorbing, the reflection
coefficients are pure phasors:

 (TIR), (14.48)

 (TIR). (14.49)

Equations (14.46) and Eq. (14.47) may also treat an absorbing medium in reflection where the irradiance
absorption takes the form . The complex index of refraction takes the form .

Consider an example of a beam incident at Brewster’s angle from air into a window with index 1.82.
Brewster’s angle is . From Snell’s Law the refractive angle is

,

, (14.50)

, (14.51)

At
Ai
----- 
 

s
ts

n′
n----

2n i( )cos
n i( )cos n′ i′( )cos+-----------------------------------------------= = ts 0=

At
Ai
----- 
 

p
tp

n′
n----

2n i( )cos
n′ i( )cos n i′( )cos+-----------------------------------------------= = tp 0=

x-units′ Tx′( )cos
Tx( )cos---------------------- x-units= y-units′  Ty′( )cos

Ty( )cos----------------------y-units=

Ar
Ai
-----
 
 
 

s

rs
n i( )cos n′ i′( )cos–
n i( )cos n′ i′( )cos+-----------------------------------------------= =

Ar
Ai
-----
 
 
 

p

rp
n′ i( )cos n i′( )cos–
n′ i( )cos n i′( )cos+-----------------------------------------------= =

rs rp

i′( )cos n′

rs j2tan 1– n′
n i( )cos------------------ n

n′
---- i( )sin 
  2

1–
1 2⁄

–
 
 
 

exp=

rp j2tan 1– n
n′ i( )cos-------------------- n

n′
---- i( )sin 
  2

1–
1 2⁄

–
 
 
 

exp=

αz–( )exp n′ n′ jαλ0 4π⁄+→

i tan 1– n′ n⁄( ) 61.2134°= =
i′ 28.7866°=

ts
n′
n----

2n i( )cos
n i( )cos n′ i′( )cos+----------------------------------------------- 1.82 2 61.2134( )cos

61.2134( )cos 1.82 28.7866( )cos+----------------------------------------------------------------------------------- 0.6257≈= =

tp
n′
n----

2n i( )cos
n′ i( )cos n i′( )cos+----------------------------------------------- 1.82 2 61.2134( )cos

1.82 61.2134( )cos 28.7866( )cos+----------------------------------------------------------------------------------- 0.7412≈= =
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, (14.52)

. (14.53)

For a single thin film it is necessary to solve the series solution for the multiple reflections which
contribute to the steady-state reflection and transmission, as illustrated in Fig. 14.2. 

, (14.54)

where

, (14.55)

We can use the series expansion relationship:

Fig. 14.2. The steady state solution for multiple reflections from a thin film separating partially reflecting surfaces. 
Many incident rays contribute to the amplitude of a single reflected ray. 

rs
n i( )cos n′ i′( )cos–
n i( )cos n′ i′( )cos+----------------------------------------------- 61.2134( )cos 1.82 28.7866( )cos–

61.2134( )cos 1.82 28.7866( )cos+-----------------------------------------------------------------------------------= = 0.536221–≈
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n′ i( )cos n i′( )cos–
n′ i( )cos n i′( )cos+----------------------------------------------- 1.82 61.2134( )cos 28.7866( )cos–

1.82 61.2134( )cos 28.7866( )cos+-----------------------------------------------------------------------------------= = 0.0≈
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, where (14.56)

. (14.57)

We can simplify a bit further

. (14.58)

The transmission coefficients are calculated similarly,

, (14.59)

, (14.60)

, , (14.61)

, . (14.62)

For the single thin film surface, the equations are defined below.  = Ni,  = Nf, and  = Ns and
 takes real or imaginary values according to Eq. (14.42)

, , (14.63)

, , (14.64)

, , (14.65)
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, , (14.66)

,  or , (14.67)

. (14.68)

A numerical example may be helpful. Consider a case of frustrated TIR. Light is incident at a 45º angle
from an index of 2 into a thin boundary of index 1 followed by a second glass component of index 2, see
Fig. 14.3. The complex value of  is selected from Eq. (14.42): 

for n = 2,  = 1, i = 45º, and : , (14.69)

Fig. 14.3. An example of frustrated TIR. Two refractive materials of index 2 are separated by a thin boundary of 
index 1 and thickness d. 
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, , and , (14.70)

, (14.71)

, (14.72)

, (14.73)

, (14.74)

, (14.75)

, (14.76)

, (14.77)

, (14.78)

, (14.79)

, (14.80)
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, (14.81)

, (14.82)

, (14.83)

, (14.84)

, (14.85)

. (14.86)

14.3.4 Fresnel Reflection with Complex Index of Refraction
Reflection may occur from surfaces that have a complex index of refraction. Cases of interest include

total internal reflection (TIR) with an absorbing material in the low index material, sometimes called
attenuated total internal reflection (ATR)[4] and reflection from a metal surface. Some work may be
required to calculate the complex refractive index from fundamental material properties or to measure it,
but once it is known the theory of this section is applicable and it is implemented in
jsurf/fresnel/refl.

The Fresnel reflection equations may be generalized from a strictly real quantity to a complex quantity
where the imaginary part represents absorption . We use  so that 

(14.87)

gives absorption. Equations (14.43) and (14.47) may be generalized to incorporate the complex refractive
index

for , , (14.88a)
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for , , (14.88b)

for , , (14.89a)

for , , (14.89b)

where  and we have considered only strictly real values of the incident refractive index . 

For , , , 

. (14.90)

For , ,  (y-tilt), 
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. (14.94)

We shall consider solution of Eqs (14.88a–14.88b) and (14.89a–14.89b) for the two cases: 
( ) and  ( ), where . We introduce the variables ξ, η, u, and
v for convenience.

, (14.95a)

where

, (14.95b)

, (14.95c)

, (14.95d)

, (14.95e)

, (14.96a)

where

, (14.96b)

. (14.96c)

14.3.5 Goos-Hanchen effect
In the case of small diameter beams incident on a TIR interface, the beam experiences a translation

along the surface. Figure 14.4 illustrates schematically the translation. This may be understood as simply
due to the phase shift variation with angle associated with reflection at TIR from Eq. (14.46) and (14.47).
The curved phase of TIR is illustrated in Fig. 14.5 as a curve response versus angle. The linear term of the
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phase function produces the Goos Hanchen shift[1]. The second order term (curvature) produces a
compression or expansion of the beam depending on the sign of the term.  

Fig. 14.4. Goos-Hanchen shift. A small diameter beam incident from the left is incident on a boundary with a lower 
index medium, making a TIR reflection. The beam is slightly shifted and also experiences some distortion due to the 
variation of phase of the reflection coefficients with angle. This is called the Goos-Hanchen shift.

Fig. 14.5. Goos-Hanchen shift, far-field implementation. A small diameter beam incident from the left is incident on 
a boundary with a lower index medium, making a TIR reflection. For a flat surface, the Fresnel reflection coefficients 
may be implemented in the far-field. The figure on the right shows the beam expanded in the far-field. The jsurf 
command implements the Fresnel reflection coefficients for the local angles. The variation of phase with angle 
creates a net linear phase variation across the far-field beam as well as distortion terms. The back-propagated beam 
is shifted as well as distorted, giving the Goos-Hanchen shift.

Goos-Hanchen shift 
at TIR reflection

Goos-Hanchen shift 
at TIR reflection

phase due to TIR reflection

reflection coefficients 
calculated in the far-
field
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14.4 Analysis of Multilayer Films
Multilayer films may be analyszed by the characteristic matrix method Ref.[2]. Consider a series of film

boundaries identified by the index i. The properties of the material following the ith surface are also
identified by i. The parameters assiciated with the layers are:

electric field
magnetic field
thickness of the layer.
index of refraction of layer, may be complex to include absorption.
angle in layer. Only the cosine of the angle will be used so we do not need to distinguish
between forward and backward directions that are of opposite sign.

The vacuum wavenumber is .
To simplify the expressions, we define the parameters:

(14.97)

(14.98)

In matrix notation, the relationship between interface i and i+1 are

(14.99)

(14.100)

For N layers, we have

(14.101)

where M is the system matrix, as defined:

(14.102)

Following Hecht, the amplitude transmission and reflection coefficients, in terms of the coefficients of the
system matrix, are:
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(14.103)

(14.104)

14.4.1 Characteristic matrix applied to single layer thin film
Consider a single interface at normal incidence with starting and ending y-vaules:

 and . (14.105)

We have the system matrix:

(14.106)

(14.107)

(14.108)

(14.109)

In the special case of a quarter-wave, single layer coating :

(14.110)

By finding a material such that, , a single layer anti-reflection coating may be made to have zero
reflectance.

14.4.2 Characteristic matrix applied to simple absorption
Consider an index of refraction with simple absorption in the film but the real part of the index of refraction
is unity everywhere. Consider normal incidence. In the region of the film, we express the index as

. We have The transmission coefficient is:
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(14.111)

(14.112)
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15. Waveguide Grating Couplers  

In the previous chapters, radiation has been assumed to propagate in isotropic media or, in the case of
certain polarization properties, nearly isotropic media. In free-space or homogeneous media, the
eigenmodes are plane waves. Fourier optics, based on plane wave decomposition, are powerful methods for
numerical calculations of propagation. Waveguides, have different modes based on the indices of substrate,
film, and cover materials, and the thickness of the waveguides. Each waveguide mode can be propagated
by applying a complex eigenvalue for propagation,

. (15.1)

The eigenvalue  is similar to the eigenvalues in free-space , with β representing the equivalent
wavenumber in the waveguide. If the waveguide supports several waveguide modes with different
propagation constants, the complex amplitude will vary in the course of optical propagation. The axial
variation of complex amplitude takes the form

, (15.2)

where the coefficients  specify the mode composition. In general, the  are not identical, so  varies
with z. For high quality optical waveguides it is desirable to build the device so that only one waveguide
mode is supported, giving a smoothly varying phase function. The current treatment will be limited to
single-mode waveguides.

Slab waveguides represent an important class of devices. These devices consist of a planar substrate
with a waveguide layer on the top of the substrate as illustrated in Fig. 15.1. 

In the direction perpendicular to the surface normal, the radiation will propagate as a guided mode. In
directions parallel to the surface, the radiation will propagate according to free-space theory. If only one
waveguide mode is supported, the problem is particularly easy because the guided mode is invariant except
for the phase evolution due to the optical path. The propagation constant of the waveguide β is determined
by the indices of the cover layer , film , and substrate  and the thickness. An effective index for the
guided propagation  may be defined such that . The index to be used for free-space
diffraction in the in-plane direction is not necessarily the same as , but in most applications the difference
may be neglected. Waveguide grating couplers allow guided modes to be outcoupled to radiated modes and
radiated modes to be incoupled to guided modes. A particularly important class of grating couplers are the
focusing couplers. These devices outcoupled to (or incoupled from) a point focus. The frequency and
direction of the grating will vary across the grating area so that the light is diffracted at each point of the
grating toward the focus point. 
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15.1 Perturbation Model of Grating Coupling
The focus of our attention in this chapter is the incoupling and outcoupling of radiation due to gratings

on the surface of the waveguide. The configuration and coordinate system is illustrated in Fig. 15.2.
Considerable simplification of the theory is possible if the grating is considered to be weak. The grating may
be represented as a perturbation of the electric permitivity of the form

. (15.3)

Fig. 15.1. Schematic of grating coupler as used in optical data storage. Light from a laser diode is injected into a slab 
waveguide. The light propagates as a guided mode in the vertical direction—trapped in a boundary layer of higher 
index. A grating of variable index or surface relief is put on the waveguide. The grating lines are curved to form a 
diffracted beam which converges to the focus. The guided mode decays as it passes under the grating, as the light is 
scattered out.

Fig. 15.2. Slab waveguide consisting of a planar substrate surface with a thin, high index layer on the top. The light 
will propagate as a guided wave when considered in a direction parallel to the surface normal and according to free-
space propagation in the direction parallel to the surface.

εpejΓ r⋅

x

y

z

laser 
diode

focus
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We shall first solve the problem for ideal linear gratings. Focusing gratings, which have variable grating
period and direction, can be considered to be a combination of linear gratings, so the nonnormal, constant
period case will apply to focusing devices. For typical grating fabrication methods and weak gratings, 
will be a relatively thin layer on the top of the waveguide. Following the approach taken by Shiau, we write
the E&M fields in the perturbed waveguide

, (15.4)

, (15.5)

where the subscripts u and p indicate the unperturbed and perturbed fields. Writing the fields (ignoring the
time phase factor which is identical for all terms), we have

, (15.6)

. (15.7)

The unperturbed fields satisfy the equations,

, (15.8)

. (15.9)

By making use of the unperturbed solutions, we have the simplifications

, (15.10)

, (15.11)

where

. (15.12)

The term  may be neglected for weak gratings. Combining Eqs. (15.10) and (15.11) we have the
equation,

. (15.13)

The right hand side of Eq. (15.13) can be seen to consist of a diffraction term  and a source term . In
the absence of the source term, Eq. (15.13) represents diffraction of the field due to the perturbation. The
source term may be included by means of a variety of theoretical approaches.
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, (15.14)

, (15.15)

, (15.16)

, (15.17)

where  indicates that the perturbation to permitivity is limited to the grating region of width d.

. (15.18)

Taking the mth order.

, (15.19)

, (15.20)

, (15.21)

. (15.22)

After removing the spatial phase factors by considering only the Bragg condition.

, (15.23)

. (15.24)

The source term  for the perturbation model, is driven entirely by the unperturbed electric field with scalar
modulation determined by . We shall consider both an induced dipole model and coupled mode model to
determine the characteristics of the perturbation field.
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15.2 Induced Dipole
The source term of Eq. (15.13) can be considered to be a coherent object consisting of a field of oscillating
dipoles. The spatial phase at each point is determined by the propagation constants and direction for guided
mode, grating, and radiated mode. For the linear grating the spatial phase factors are ,

, and  for the guided mode, grating, and radiated mode respectively. Both the guided
mode and the grating are parallel to the plane of the surface, i.e.,

, (15.25)

. (15.26)

Grouping the spatial phase factors in Equation (15.13), and requiring phase matching on the surface of the
waveguide, we have the Bragg condition

. (15.27)

By considering stationary phase, we can see that the only direction having significant radiation will be the
one determined by the Bragg condition. We shall assume the Bragg condition is met for outcoupling and
apply a mode-matching condition for input to take into account detuning. When viewing the light scattered
out of the waveguide from a direction satisfying the Bragg condition, we would see a coherent source of
constant phase. The radiation of light from a coherent source is well-understood. One approach is to
consider the radiation at a distant point to be due to dipole radiation from each point on the surface. If our
observation point is a large distance from the surface, the radiation due to each point is (see Jackson[1])

, (15.28)

where p is the dipole moment and r is the distance from the observation point to the dipole. According to
Eq. (15.27) E is driven by the projection of the dipole onto the transverse plane of the observation direction
and the polarization of E is determined by the projected character of the dipole. For a linear grating, a
collimated beam is generated and one must be at infinite distance to observe the surface of the grating while
satisfying the Bragg condition. For a focusing grating, an observation point at the focus position will satisfy
the Bragg condition when viewing all points on the surface. We may, therefore, calculate the complex
amplitude at the center of focus of a focusing grating, by calculating Eq. (15.27) for all points on the surface
of the waveguide. To be more precise we must consider P as a volume source with the further complication
that the dipoles lie in a medium of different index.

Figure 15.3a illustrates the fact that an ideal dipole in vacuum generates radiation (in the far-field, i.e.,
) based on the projection of the dipole oscillation onto a plane transverse to the direction of

observation. Fig. 15.3b illustrates dipole radiation as observed after crossing through a refractive boundary.
The situation is little changed from the vacuum situation. There are Fresnel transmission coefficients which
must be applied to the radiation at the boundary. Similarly, when propagating from a high index medium to
a lower one we have refraction effects and Fresnel transmission coefficients to consider, as shown in Fig.
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15.3c. The Fresnel transmission coefficients will have a small effect on the observed polarization by
transmitting s- and p-polarization differently. For near-normal incidence, the effect on polarization is very
small and we may safely say that the polarization of the radiation is simply the projection of the dipole on
the transverse plane. 

For the focusing grating and taking the observation point at the center of the focused beam, we can
determine the complex amplitude field and polarization of the induced dipoles. The induced dipole field
must meet the Bragg condition and the spatial restrictions of . The perturbation to the permitivity
is generally localized to a thin layer on the top of the grating. We must perform a volume integration over
the waveguide region

, (15.29)

, (15.30)

where

, (15.31)

and  is defined to be the integrated complex amplitude taken along the z-direction such that—†

. (15.32)

Fig. 15.3a. Dipole in vacuum 
projects onto transverse plane.

Fig. 15.3b. Dipole in vacuum 
projects onto transverse plane in 
vacuum after refraction and Fresnel 
losses.

Fig. 15.3c. Dipole in high index 
material projects onto transverse 
plane in vacuum after refraction and 
Fresnel losses
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For a grating of constant modulation depth,  is a constant and the integration to form α is also
independent of the  coordinates of the pupil. In that case, the only variation is due to the projection of
the dipole unit vector  onto the direction of observation. Consequently, the complex amplitude and
polarization properties in the pupil of a focusing grating are readily determined from the unperturbed
properties of the guided mode field and the geometry of the focusing beam.

The properties of the guided electric field have the forms (Yariv, Quantum Electronics, [Ref. 2, p512-
514]),

TE mode

(15.33)

(15.34)

TM mode

(15.35)

, (15.36)

. (15.37)
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Equation (15.33) gives the variation as a function of depth and Eqs. (15.36) and (15.37) give the depth
variation for TM and a sketch of the appearance of the TE and TM guided mode fields. 

The TE mode is simply a linearly polarized field, as illustrated in Fig. 15.4 by a series of vectors parallel
to the surface, transverse to the direction of propagation and varying in amplitude according to depth. The
dipole projection of this uniform linearly polarized field must create a field in the pupil of a focusing grating
which is also linearly polarized. Figure 15.5.a illustrates the exponential decay of energy which is typical of
focusing gratings. The TE mode is propagating in the –y direction. 

Fig. 15.6.a shows the elliptical polarization map for TE indicating perfectly uniform polarization. We
are neglecting the slight effects of Fresnel transmission coefficients which depend on the local s- and p-
polarization components as the field exits from material into air. TM polarization exhibits components
parallel to the surface normal and in the direction of propagation. These components differ by 90º of phase.
The TM polarization may be considered to be elliptical polarization when viewed perpendicular to the
direction of propagation, as shown in Fig. 15.4. Only the elliptical polarization at the grating level contribute
to the radiation. By the induced dipole argument, the polarization in the pupil is simply the projection of the
dipoles in the grating layer onto the transverse plane associated with the direction of propagation. 

The most important factor for the outcoupling of TM guided radiation is the geometric projection of the
dipole. The projected dipoles determine both the orientation of polarization and the coupling coefficient.
Fig. 15.5b illustrates the intensity profile of the outcoupled radiation. The dip in the center is due to the fact
that the vertical component of the TM polarization does not contribute to radiation in the vertical direction.

Fig. 15.4. Schematic of TE and TM dipoles in waveguide outcoupling. TE has a well-defined linear polarization at 
all levels and generates linearly polarized output. TM is elliptically polarized with variation as a function of level. 
The elliptical polarization of TM at the grating level projects onto the transverse plane of the radiation giving 
different states of elliptical polarization across the aperture of a focusing grating coupler. The grating is considered 
to have insignificant surface relief so the surface normal is constant across the surface.

Substrate

oblique grating

TE dipole

radiation

Film TM dipole
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Fig. 15.6b illustrates the polarization in the pupil due to radiation scattered from the TM mode. Figures
15.7a and 15.7b show the point spread functions for outcoupled TE and TM respectively. Outcoupled TE is
nearly an Airy pattern although the exponential decay does broaden the distribution in one direction.
Outcoupled TM is significantly degraded by the polarization variation across the pupil. 

The Strehl ratio for the example given was about 0.1 for TM. Figs. 15.8a and 15.8b show the
polarization in the far-field for outcoupled TE and outcoupled TM radiation. Note the significant variation
in polarization in the side lobes for outcoupled TM radiation. 

Fig. 15.5.a. Isometric plot of TE radiation output. The 
guided mode is propagating down from the top. The 
pupil exhibits simple exponential decay. The grating is 
circular, causing the outer edges to begin the exponential 
decay later than the center.

Fig. 15.5b. Isometric plot of TM radiation showing 
pronounced departure from the exponential decay. The 
outcoupling is much lower in the center because the 
vertical component of TM does not contribute.

Fig. 15.6.a. Elliptical polarization plot of TM radiation 
showing pronounced departure from the exponential 
decay. The outcoupling is much lower in the center 
because the vertical component of TM does not 
contribute.

Fig. 15.6b. The polarization varies across the pupil of a 
focusing grating for TM because the elliptical dipoles 
are viewed from different directions as seen from the 
focus point.
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15.3 Mode Coupling Theory
The outcoupled light may be characterized as a mode which has a characteristic complex amplitude and

polarization function. For an ideal device the phase will yield a spherical wavefront. The intensity will vary
according to an exponential decay. For simple collimated propagation under the grating, neglecting
diffraction, and assuming an amplitude decay factor , the amplitude varies as

, (15.38)

Fig. 15.7a. Far-field intensity of outcoupled TE 
radiation. The distribution is fairly close to an Airy 
pattern. The Strehl ratio is high.

Fig. 15.7b. Far-field intensity of outcoupled TM 
radiation. The Strehl ratio is 0.1 because of the 
polarization variation across the pupil. 

Fig. 15.8a. Far-field polarization map of outcoupled TE 
radiation.

Fig. 15.8b. Far-field polarization map of outcoupled TM 
radiation. The central lobe shows orthogonal 
polarization in the central lobe of the outcoupled far-
field TE plot. The Strehl ratio is less and information on 
the pupil polarization variation is contained in the 
secondary lobes.
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where  is the initial amplitude and y is the propagation direction. The integral in the exponent
simplifies to y if the decay factor is constant.

The coupling constant varies according to the depth of the grating modulation and according to the
direction of the coupled radiation. Coupled mode theory provides the basis for calculating the coupling
coefficient.

, (15.39)

where the integration is taken transverse to the propagation direction.  is the electric vector mode for the
guided field,  is the electric vector mode for the radiated field, † indicates the conjugate transpose vector,
and Δε indicates the variation function of the electric permitivity. For an isotropic material Δε is a scalar.
For anisotropic material Δε is a matrix. At this point, only isotropic material will be considered.

 may be written in terms of three orthogonal modes

. (15.40)

For TE and TM we have

, (15.41)

, (15.42)

where the ψ and φ functions are normalized eigenfunctions for TE and TM respectively.
We can break Eq. (15.39) into parts to determine the generation of s- and p-components. The three

coefficients needed are

, (15.43)

, (15.44)

. (15.45)

Since the radiation mode is a plane wave, it does not show up in the coupling coefficients except for the
vector dot product. The vector dot products will be treated explicitly below. The coefficients of Eqs. (15.43)
through (15.45) may be evaluated at only one point and only the geometric cosine factors calculated for each

 point.
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15.4 TE Guided Mode
The solution for the TE guided mode proceed as follows,

TE guided field: . (15.46)

The projection of  onto the transverse plane of the radiation is

. (15.47)

The radiation vector is therefore

, (15.48)

where  is the mean mode thickness.
Equation (15.48) defines the magnitude and polarization of radiation outcoupled from a TE guided

mode. The radiation vector may be represented as components of  and 
The radiation will take the form

, (15.49)

using the usual definitions of  and  (See Eq. (11.38) and Eq. (11.39)).

, . (15.50)

The amplitude loss coefficient for the guided mode is

. (15.51)

15.4.1 TM Guided Mode
The treatment of TM is similar but both z- and y-components must be treated

TM guided mode: , (15.52)

, (15.53)

. (15.54)

The radiation is the sum of the z- and y-components
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. (15.55)

Equation (15.55) defines the magnitude and polarization of radiation outcoupled from a TM guided mode.
The loss coefficient for the guided mode is determined to conserve energy

, (15.56)

. (15.57)

15.4.2 Paraxial Approximation
For small numerical apertures and radiation exiting nearly normal to the surface

, (15.58)

, (15.59)

. (15.60)

The x- and y-components represent the properties of the exit pupil of the focused beam. The TE mode is
established as a complex amplitude distribution with only an x-component. TM is established with y- and
z-component. The z-component must be  out of phase with respect to the x-component.

The electric vector components for TM are defined by Eqs. (15.36) and (15.37). The complex amplitude
distribution is set up initially in the form

, (15.61)

where c is a purely real number such that the vector is normalized.

15.5 Bragg Condition
From Welford[3], we have the equations for solving the Bragg condition. Let the grating be defined by two
ray vectors  and  that would constitute construction optics. Let the incident ray be defined by  and
the exiting ray be defined by . The optical ray is the index times the unit direction vector. The Bragg
condition is for ordinary free space optics is
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. (15.62)

In the special case where beam “1” is in a waveguide and beam “2” is in air.

. (15.63)

Define,

, (15.64)

such that

. (15.65)

The solution is

. (15.66)

If the focus is at  and the point of diffraction on the grating is 

. (15.67)

15.6 Round Trip: Outcoupling Followed by Incoupling
Fig. 15.9 illustrates out-coupling from a focusing waveguide coupler followed by reflection from a

surface and subsequent in coupling. Figs. 15.10a to 15.10d illustrate the waveforms.  

15.7 References
1. J. D. Jackson, Classical Electrodynamics, Chap. 9, John Wiley & Sons, Inc. (1962).

2. A. Yariv, Introduction to Optical Electronics, 2nd Edition, Chap. 2, Holt, Rinehart and Winston
(1971).

3. W. T. Welford, Aberrations of Optical Systems, Section 5.4 and 5.5, Adam Hilger, (1986). 
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Fig. 15.9. Schematic illustrating outcoupling of radiation, focusing on an optical data storage surface, reflection, and 
return of the radiation with the distribution reversed. In outcoupling (top), light from a laser diode is injected into a 
slab waveguide. The light propagates as a guided mode in the vertical direction—trapped in a boundary layer of 
higher index. A grating of variable index or surface relief is put on the waveguide grating. The grating lines are 
curved to form a diffracted beam which converges to the focus. The guided mode decays as it passes under the 
grating, as the light is scattered out. The beam is reflected at the focus by the optical data storage surface and returns 
to the grating (bottom). The returned, incident mode is flipped with respect to the outgoing beam and is, therefore, 
not mode matched. The light is partly scattered into the grating and partly transmitted, because the mode is not 
perfectly matched. The guided mode is focused onto a detector. A more detailed arrangement —not shown for 
simplicity—allows optical separation of the laser diode and the detector paths.
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Fig. 15.10a. Radiated mode after outcoupling. Fig. 15.10b. Radiated mode after outcoupling.

Fig. 15.10c. Radiated mode after outcoupling. Fig. 15.10d. Transmitted radiation mode. Note that the 
radiation is most poorly matched at the upstream and 
down stream parts of the grating aperture.
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16. Optimization

It is a great advantage to be able to have automatic optimization of the parameters of the system. This
can be done using the registers for variables, targets, and constraints. The variables may be any real number
since any real number can be controlled by registers. The target values can be any of the parameters
accessible from the command variable/set/parameter. The optimization is implemented by using
macros. Figure 16.1 illustrates the operations. One begins by initializing the problem and then call the
optimization macro. If the optimization is successful stop, if not a second call to the optimization macro is
made. 

The optimization macro initializes the nominal target values by calling the Jacobian matrix with the
nominal variable values. The optimization macro then calls the Jacobian macro to calculate the Jacobian
matrix and ultimately to calculate the change vector. The Jacobian macro bumps each variable in turn and
calculates the value of the target parameters by calling the system macro. The system macro responds to the
value of the variables and calculates the parameter values. When the Jacobian matrix calculates the change
table is generated and the corrected set of variable values is created. The command sequence sets the size
of the array, identifies the name of the system macro (in this case called system), defines the variables and
parameters, and initializes the system. For this example spherical aberration and coma are added. The
commands to set up a sample optimization are listed in Fig. 16.2. The OPT macro, listed in Fig. 16.3,
initializes the Jacobian by calling the system macro with the nominal variable values. The Jacobian macro
is called twice—once for each variable. The Jacobian macro increments the variable number and bumps the

Fig. 16.1. Schematic of command and macros for optimization.

Command file
• initialize problem
• setup variable and 

parameter tables
• call optimization 

routines
Optimization macro
• initialize Jacobian
• store parameter values for 

nominal system
• call Jacobian macro
• calculate change vector

Jacobian macro
• Increment variable 
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• call system macro

System macro
system commands
   .
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current variable, calls the system macro, and stores calculated parameter values. Upon return to the
optimization macro OPT, the Jacobian matrix is calculated and listed and the change table can be calculated.  

16.1 Method of Least Squares
The optimization process consists of manipulating a set of parameters  to minimize a merit

function φ defined in terms of a set of performance parameters  where  are weighted
aberrations of the optical system. The vector of performance parameters is

, (16.1)

where

, (16.2)

Fig. 16.2. Sample command sequence for optimization.
echo/on # set echo on for commands 
array/s 1 16 # define array size
nbeam 2 # define two beams 
opt/nam system # define macro name, this feature is not used now 
opt/var/add Focus .01 # first variable
opt/var/add Tilt .01 # second variable
opt/tar/add Str 1 # Strehl with target 1
clap/c/c 1 5 # initialize problem 
copy 1 2 
abr/sph 2 .2 # define aberrations 
abr/coma 2 .2 
macro/run opt # run optimization macro once

Fig. 16.3. Macro commands for optimization and system functions.
.opt 
 opt/jac/run 1 # 1 = initialize Jacobian 
 macro system # run system macro 
 opt/jac/run 2 # 2 = store nominal performance values 
 macro jacobian/2 # call jacobian macro once for each variable 
 opt/jac/list # list Jacobian values, all done with Jacobian 
 opt/change # compute and implement change table.
macro/end 
.jacobian 
 opt/jac/run 3 # 3 = increment each variable 
 Str= # list value of Strehl ratio 
 macro system # run system macro 
 opt/jac/run 4 # 4 = store all target values 
macro/end 
.system 
 copy 2 1 # system macro, copy stored beam to beam 1 
 abr/focus 1 Focus # add some defocus through register 1
 abr/tilt 1 Tilt # add some tilt through register 2
 variab/set/par Str 1 strehl # store Strehl ratio in register 3 as parameter.
macro/end 

x1 x2 … xn, ,
f1 f2 …, ,  fn fi

f
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fi wi ei ti–( )=
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 is the weight,  is a current performance parameter, and  is the associated target of the performance
parameter.

The weighted aberration variance may be found from the weighted aberrations:

. (16.3)

where the superscript t indicates the transpose. In vector notation,

. (16.4)

The aberrations are functions of the system variables, x, such that (to first order)

. (16.5)

where

(16.6)

The matrix A is the Jacobian and has elements

. (16.7)

The the Jacobian matrix has the form

. (16.8)

where T is the number of targets (rows) and V is the number of variables (columns). Typically in physical
optics problems the number of variables V to be solved is rather small. However, with arrays as targets T
may be quite large—in the millions. Providing explicit memory storage for matrix A can be a burden.
Special methods are described in Sect. 16.1.1 for handling the burden of large numbers of targets associated
with using arrays as targets.

Given an initial weighted aberration vector f0 for the variable state x0, the first order relationship is
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. (16.9)

The optimization procedure is to find the variable vector x which minimizes φ,

, (16.10)

, (16.11)

where

. (16.12)

Note that we have two terms of maximum dimension V (a small number)  and  that must be formed
in any case for use below. The derivative with respect to the vector of variables is

. (16.13)

Setting  and solving, we have

, (16.14)

with solution using the pseudo-inverse

. (16.15)

where  is called the pseudo-inverse. Equation (16.14) may be solved by such methods as singular
value decomposition, or the the pseudo-inverse of Eq. (16.15) may be solved by matrix inversion methods.

The above linear equations are called the method of least squares. Note that AtA is square and
symmetric with rank V equal to the number of variables composing x. Inversion of this square matrix is
numerically the most difficult step in solving the least squares problem shown in Eq. (16.15). Consequently
the number of variables is the prime determining factor in the difficulty of solving the least squares
problems. The number of scalar target values is generally not a major factor in the time required for solution.
For arrays as targets, the time required to scan over perhaps millions of target points does add to the
calculation time, and the mathematics have been formulated to reduce this calculation time.

The matrix At is the transpose of the Jacobian with elements

. (16.16)
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The transpose of the Jacobian matrix At has the form

. (16.17)

16.1.1 Generalization to include arrays as targets
In physical optics it is desirable to be able to use arrays of intensity of complex amplitude information.

We may have a combination of array and scalar performance information with the information stored in
different places. It is helpful to break f into pieces. Consider a secton p of miscelaneous scalar values and
two arrays q and r arrays so that f is divided into three sections:

, (16.18)

using Dirac notation to indicate arrays of values. Miscelaneous values will generally require individual
weighting continuing from Eq. (16.2):

, (16.19)

where  indicates a separate weight for each scalar target value. Arrays can have a uniform weighting so
Eq. (16.2) is modified to be:

, (16.20)

, (16.21)

where wq and wr are the weights for the entire Q and R arrays respectively. The Jacobian of the scalar values
is P and the associated Jacobian matrices for the arrays are Q and R and giving the compound expressions:

, , , and . (16.22)
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For example a 2 × 3 P-value consisting of three arrays (Tp = 3) of values and two optimization variables, we
have (V = 2)

, (16.23)

where  is the vector of derivatives of target array pj with respect to variable xi. Given two variables
(V = 2)

. (16.24)

The matrix PtP is symmetric with rank V and the order of the entities in the dot product do not matter.
With arrays, the performance values in Eqs. (16.8) and (16.25) may be in the millions making the

Jacobian matrix A and its transpose At extremely large. Forming such large Jacobian arrays would result in
storing a large amount of duplicate information. Consider Eq. (16.25)

, (16.25)

where the sizes of the matrices and vectors are given in subscript.
Let us see if we can remove the necessity to store millions of duplicate numbers. Let us remove the P-

values that may be in the millions. We can rewrite Eq. (16.25) entirely in quantities of V-values that might
be based on just a few variables. From Eq. (16.25) define S and y such that

. (16.26)

Note that there are no longer any entities left having a dimension of T. The two new variables are defined to
be

, (16.27)

. (16.28)
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The new variables may be calculated with the constituents of fi stored in the various locations in memory,
for example from Eq. (16.20) we need , , and  stored in various locations to form qi which is a
component of fi as indicated in Eq. (16.18). From Eq. (16.27):

, (16.29)

. (16.30)

Note that in the case of a scalar target, the dot product becomes a scalar multiply

. (16.31)

The lengths of the constituent parts P, Q, and R may be have any values provided T = P + Q + R. Simarly

, (16.32)

. (16.33)

It is evident from Eqs. (16.30) and (16.33) that both the performance array and the Jacobian matrix may be
treated in groups of rows.

Note that in the case of a scalar target, the dot product becomes a scalar multiply

. (16.34)

There is an important distinction between the vector dot product and the scalar product. If there are no array
targets, then it is necessary to have as many scalar targets as there are variables, i.e., . With array
targets, it is meerely necessary that there be no scalar gij such that
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(16.35)

for any pair of i and j. In other words, each system variables should have a different partial derivative
functional forms for a given target array. Consider a single array target f and two system variables. We have

. (16.36)

In the general case Eq. (16.36) indicates that the system matrix S is well behaved. However if Eq. (16.35)
holds, indicating that some of the cross-derivatives have the same functional form, then the matrix can
become ill-behaved and no inverse exists. Assume Eq. (16.35) holds then,

. (16.37)

The determinant of S is

. (16.38)

If the determinant |S| = 0, then the inverse S-1 does not exist. Provided the partial derivatives of a single array
target with respect to all system variables are independent, that single array target will suffice.

Note that S and its constituent matrices are square and symmetric with Sij = Sji so that the values in the
lower diagonal to not have to be explicitly calculated and may be copied from the upper diagonal.

The terms forming the sums of both Eq. (16.30) and Eq. (16.33) may be calculated separately to form
an intermediate vectors of length V and square matrices of rank V. In typical physical optics problems V = 5
or less. The matrix S and vector y may be formed on-the-fly from data fi stored in diverse locations. Rather
than construct the memory-intensive matrices A and At and vector f needed for Eq. (16.14), we directly
create the small matrix S and vector y required for Eq. (16.26) and solve it by any of the methods commonly
used for solution of linear equations.

We may consider the general probem, with or without arrays as targets, to be solved as,

. (16.39)

Equation (16.39) may be solved by singular value decomposition (SVD), matrix inversion, or similar
methods.
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16.1.2 Damping
Because the damped least squared DLS method described above is a first order approximation and

therefore neglects nonlinearities of the system, it is prone to oscillations. In order to add stability to the
procedure we add into the merit function the square of the change vector times a damping factor,

. (16.40)

where p2 is the damping factor. Strong nonlinearities in the system require larger values of p2, i.e., more
damping. Solving for the modified merit function, we have

(16.41)

where I is the unity matrix.
In multiplicative damping, the diagonal terms are increased by multiplying by a damping constant:

. (16.42)

Having taken at least one iteration, we have calculated a set of aberrations f1c which we can compare
with the actual aberrations f1 at the state x1, so we can determine the residual aberrations. It is possible to
solve for the value of p2 by recalculating f1c. The optimum value of damping factor may be used for the next
optimization cycle by minimizing the difference f1–f1c  and using that damping factor for the next iteration.

16.1.3 Applying Constraints
It is commonly required that the optical system meet certain constraints, i.e., focal length, overall length,

positive edge thicknesses, etc. Constraints may be equalities or inequalities. In the simplest approach
inequalities are ignored completely if the system does not violate them and applied as equalities if the
system does violate them. In practice this may result in oscillation at a constraint boundary and soft
boundaries may be required. The discussion here is limited to equalities since this topic is fundamental.

Consider a set of constraint functions qk(x)and a set of target values ck. For example we may wish to
control the overall power K in terms of the surface curvatures cij of two thin lenses in proximity,

, (16.43)

, (16.44)

, , , and . (16.45)
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16.1.4 Lagrange Multipliers
If we approximate the functions  to first order, then we have the equation

, (16.46)

where c is the vector of target constraint properties, c0 is the vector of initial constraints, and B is the
Jacobian matrix of constraints consisting of elements

. (16.47)

Thus the procedure for finding the solution vector to set the constraints properly is identical to the DLS
procedure for finding the aberrations. However we wish to maintain the constraints once having met them.
It is possible to maximally control the constraint conditions by restricting parameter state movements to
directions which are normal to the surfaces of constant ck. The row vectors of B define directions normal to
the constraint surfaces. For example,

. (16.48)

The possible directions are specified by BΔl where Δl is a vector of coefficients defining the magnitude of
movement along the various constraint directions.

From the definition of the merit function

, (16.49)

and with  and .
We can solve for the vector of Lagrange coefficients to achieve

. (16.50)

This results in the matrix equation

. (16.51)

Solution of the augmented matrix equation will result in close adherence to the required constraints. The set
of Lagrange multipliers, Dl, are not explicitly used but serve the purpose of effectively absorbing all
movement normal to the boundary so that none of this movement goes into Dx.
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The Lagrange multiplier method may be interpreted as two effects. The first effect is the resolution of
the required change in constraint values which could be taken as an extension of the previous least squares
solution to include the constraint equation,

 and , (16.52)

. (16.53)

The second effect is ensuring that the solution moves parallel to the constraint surfaces

. (16.54)

The term  is in a direction perpendicular to the surfaces defining the constraints. Figure 16.4
illustrated the several vectors associated with Lagrange multipliers. 

By fitting the two vectors on the right hand side of Eq. (16.54), we have terms normal and tangent to
the surfaces defining the constraints. We discard the perpendicular term assuring the solution moves tangent
to the constraint surface.

Equation (16.23) is suitable for solving equality constraints. An example of an equality constraint is
maintaining the focal length. An example of an inequality constraint is to keep the focal length greater or
less than some value. Inequality constraints may be implemented by invoking Eq. (16.51) only when the
constraint is violated and repeating the optimization step. When the constraint is not violated we rewrite B
to delete the row corresponding to the deleted constraint.

Fig. 16.4. Illustration of solving for vectors perpendicular and tangent to the constraint surface to fit the desired 
change in parameter space. We discard the vector , keeping the solution on the constraint surface.

SΔx y= BΔx c c0–=

S
B

Δx y
Δc–

=

SΔx BtΔl+ y=

BtΔl

SΔx

y

BtΔλ

BtΔl
Jump to: ,  Commands  Examples



338 GLAD Theory Manual
16.1.5 Estimated merit function
Given a vector of ariables Dxp that include optimization with damping and constraints, we can

calculated an estimate of the of the merit function to be expected when Dxp is applied using Eq. (16.11), Eq.
(16.12) and Eq. (16.27),

, (16.55)

. (16.56)

We save f0 from the initial evaluation,

. (16.57)

y and S were found during the solution to Dx in Eq. (16.30) and Eq. (16.33), so

, (16.58)

, (16.59)

Both Eq. (16.58) and Eq. (16.59) have a maximum rank of V.
In the absence of damping and with no constraints, fcalc = 0; but with the usual nonlinear system, the

actual calculated merit function will usually not be zero.

16.2 Example of Optimization
This example illustrates optimization in a very simple configuration. The GLAD/OPTION feature must

be implemented. The system to be optimized is a spatial filter, as illustrated in Fig. 16.5. This problem is
solved in Example 60. There is a pinhole at the focal region of elliptical shape with the x- and y-radii
variables. The location is also allowed to vary. Astigmatism is introduced at the first lens and the objective
of the optimization is to optimize simultaneously the Strehl ratio and the energy. The aperture will be moved
and resized by the optimization process to roughly match the line foci caused by the astigmatism. The merit
function is 

. (16.60)

In this particular case there are two solutions—the two line foci. Figures 16.6a, 16.6b, and 16.6c show
the line foci to either side and the bilaterally symmetrical pattern at the paraxial focus. Fig. 16.6d shows the
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convergence is rapid for this simple problem. Convergence in more complex problems may not be as easy
to achieve. 

Fig. 16.5. Configuration to be optimized. The pinhole at the line focus is to be moved and its size changed in the x- 
and y-directions to simultaneously optimize the Strehl ratio and energy transmitted through Aperture 2.
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Fig. 16.6a. Line focus 0.1 inside the paraxial focus. Fig. 16.6b. Paraxial focus.

Fig. 16.6c. Line focus 0.1 outside the paraxial focus. Fig. 16.6d. Merit function change per optimization 
cycle.
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17. Axicon Mirrors

Most laser beams may be considered to be propagating along a well defined optical axis. In this chapter,
some important exceptions will be considered. Cone mirrors, called axicon mirrors, can transform a
conventional beam into a cylindrical wavefront which propagates in the radial direction. Axicons may be
general surfaces of rotation but the scope here will be limited to the elementary conical form for simplicity.
We shall refer to ordinary beams with a well defined axis as axial beams and cylindrical wavefronts as radial
beams. Fig 17.1 illustrates the transformation of axial to radial mode and illustrates the fact that the optical
axis becomes a plane in radial mode located at the apex of the axicon. Propagation of both axial and radial
beams are readily treated numerically by Fourier methods. When considering axicon mirrors, it is
convenient to generalize the concept of axis to include planar optical axes and cylindrical optical axes. The
behavior of the optical axis is a key consideration in characterizing the properties of axicon optical systems.

A radial beam may be transformed back into an axial beam by a second axicon, but in the more general
case the radial beam will be transformed into an annular form, as shown in Fig. 17.2. The annular beam is
characterized by a cylindrical optical axis. In the special case where the radius of the annular axis goes to
zero, the annular beam becomes identical to an axial beam. 

The axicon command controls a number of operations associated with axicons. GLAD is limited to
the special case of axicons consisting of simple cone mirrors with 90º apex angles. Normally beams
propagate as “pencils” of light with a well defined optical axis. This condition is referred to as axial mode.
Axicon mirrors can transform axial beams into radially (or nearly radially) propagating beams. After an
axial beam hits an axicon, the optical axis is split into a plane perpendicular to the original axis. This
condition is referred to as radial mode. In the general case, an axicon will operate on a beam in radial mode
to produce a beam with the optical axis transformed into a cylinder. This is referred to as annular mode. An

Fig. 17.1. An axicon mirror splits the optical axis of an 
axial beam into a plane perpendicular to the axis in 
forming a radial beam.

Fig. 17.2. A second axicon can generate an annular 
beam from a radial beam with the axis taking the form 
of a cylinder.
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important special case is when the radius of the cylindrical axis of the annular beam degenerates into the
original optical axis. This case constitutes a return to axial mode.

An important consideration in axial beams is the proper treatment of divergence. Spherical wavefronts
may be as accurately treated as collimated wavefronts. Generally annular beams have been treated as semi-
collimated beams. One may generalize the annular beam to treat noncollimated annular beams. The fast-
Hankel transform developed by Siegman is useful only for semi-collimated annular beams[1–4]. We shall
present a superior propagation method of propagating annular beams which circumvents the numerical
difficulties of the fast-Hankel transform and which can treat beams with significant divergence or
convergence.

17.1 Radial Mode Propagation
In collimated space, we represent the complex amplitude by an ensemble of plane waves. A cylindrical

wave should be represented by a set of circumferential harmonic functions. The period of the harmonic
functions should be integer fractions of the circumference. The intrinsic aliasing behavior of discrete FFT's
works to our advantage in this application. Discrete one-dimensional Fourier transforms are identical in
behavior to an infinite field of identical arrays. This is the same solution as the cylindrical harmonic
functions provided we wrap the circumferential distribution into the rectangular array with no guard band
in the circumferential direction—vertical axis in Fig. 17.3. 

Taking the circumferential direction to be the y-direction, the cylindrical propagator is,

Fig. 17.3. Schematic of transformation of a flat top axial beam represented on a square array, into a radial beam with 
nonuniform intensity on a rectangular array. In radial mode, the horizontal axis represents the radius and the vertical 
axis represents the azimuthal direction. The optical axis is a vertical line in the center of the rectangular array. By 
using no guardband in the vertical direction, cylindrical propagation is treated correctly by FFT techniques.
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, (17.1)

where ,  and  are the radii of the cylindrical wave before and after the
propagation,  and  are the forward and inverse Fourier transforms, and η is the spatial frequency
variable for the y-direction. GLAD allows separable diffraction propagation, but the existing routines must
be modified for this application.

The x-direction may be treated in more conventional fashion. GLAD currently allows cylindrical optics
and separable diffraction. This treatment is consistent with the use of a cylindrical nonlinear gain region.
The radial beam may be represented numerically by a rectangular array with the x-direction corresponding
to the radial direction and the y-direction corresponding to the azimuthal direction. Unlike axial beams, the
azimuthal direction is arranged to exactly fill the numerical array. In this case the harmonic treatment
intrinsic to Fourier transform methods accurately represents the cyclical nature of the cylindrical wave
propagation. The transformation from axial form to radial form requires the use of interpolation. The inner
radial zones in the axial representation are significantly stretched to fit into the radial representation, as
shown in Fig. 17.4. The center point of the axial beam corresponds to the center of the x-axis in radial form.
The center point is infinitely stretched out and must have zero intensity. 

Given a uniform intensity in the initial axial beam, the resulting radial beam will vary linearly with
radius. Figs. 17.5–17.8 show how an initial flat top function is transformed into a radial beam with linear
variation of intensity. GLAD uses linearly interpolation which results in some raggedness of the boundary.
The conversion of axial-to-radial modes generally shows loss in energy of 1% to 2%. This energy loss does
not significantly effect propagation properties or the formation of laser modes. 

It will be apparent that Eq. (17.1) will fail if we attempt to propagate to . This is to be expected
because the cylindrical wave would, according to the simple Fresnel theory, have infinite image intensity.
Clearly the Fresnel theory is unable to treat the cylindrical wave near the focus. Unlike axial beams where
zones inside and outside the Rayleigh range are defined, the waist of the cylindrical wave is set to an
infinitesimal value, the Rayleigh range is essentially zero, and the beam is always outside the Rayleigh
range. The logical coordinate system for the cylindrical wave is to use the original optical axis as the center
of the cylindrical wave calculations.

17.2 Diffraction Considerations in Generating a Radial Beam by an Axicon
The axicon is a “thick” element. The center of the beam spends more time in axial mode and less in

radial mode than the outer part of the beam. This behavior creates a variation of the point spread function
across the axis and, therefore, can not be represented by Fourier methods. Fig. 17.4 illustrates schematically
the variation of the diffraction point spread function across the pupil. In the radial direction, the point spread
function has the same width across the pupil. It should also be noted that the width of the diffraction point
spread function is greatest in the radial direction, implying diffraction will be of most consequence in that
direction. In the azimuthal direction, the beam is strongly diverging so that a given physical distance along
the radius has a small effective diffraction length. In the azimuthal direction, the region near the cone tip
begins to expand sooner than the outer regions of the beam, so the inner regions will show smaller
diffraction effects and, therefore, the diffraction spread function is narrower in the azimuthal direction. The
non-Fourier effects in the azimuthal direction are of relatively minor consequence because the diffraction
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in the radial direction has more effect and most axial devices are nearly radially symmetric. If required, one
could address the non-Fourier behavior by the aperture division methods described in Ex. 35.

Fig. 17.4. The axicon function will map zones in the compact beam path into the radial wave representation and vice 
versa. The compact beam may be represented by a conventional square array. The inner zone 2 must be greatly 
stretched, reducing the intensity substantially. The tip of the zone can not be treated.

� �

�

�
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blunt tip

input intensity from 
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The axicon/radial command uses a user-specified radius to determine the exiting radius of the
radial beam. GLAD propagates that distance from the cone tip as an axial beam and then does a geometric
conversion of the intensity, as illustrated in Fig. 17.9. 

Axicons require special consideration of nonuniform irradiance and polarization disruption. The axicon
remaps the irradiance in nonuniform fashion. From geometrical theory, intensity in each zone is changed by
the ratio of the radius of that zone before and after the axicon. In propagating from an axial beam to a radially
expanding beam, all axial zones are converted to zones in the radial beam with identical radii. This causes
inner zones in the axial beam to have greatly reduced intensity in the radial beam. The process is reversed
in converting radial beams to axial beams. Zones in the radial beam which are converging to the axicon tip
have high intensity in the axial beam. In principle the intensity of the axial beam goes to infinity at the
axicon tip after conversion from a radial beam. In reality, diffraction will cause the “hot tip” effect to spread.
In converting from axial to radial mode or vice versa, GLAD requests specification of a finite radius of the
radial beam. For axial-to-radial conversion the final state in radial mode is set at the specified radius. For
radial-to-axial conversion, the beam is propagated in radial mode to the specified radius and then converted.

Fig. 17.5. Intensity in axial mode. The distribution has a 
hole in the center, representing the blunt tip of the cone.

Fig. 17.6. The polarization state in the axial leg is 
linearly polarized. 

Fig. 17.7. Intensity distribution in radial beam showing 
the nonlinear effect on intensity. The radius is in the x-
direction, the azimuth in y.

Fig. 17.8. Polarization in the radial beam. Note that the 
polarization rotates in the azimuthal direction.
Jump to: ,  Commands  Examples



346 GLAD Theory Manual
With a radial beam generated with the focal parameter, toroidal mirrors may be used to control the
degree of divergence as projected onto the optical axis. In the azimuthal direction the toroidal mirror must
have the radius of the radial wavefront. The mirror/toroid command may be used with both radii
specified correctly. Alternately, the parameter xonly may be used in the form mirror/xcyl kbeam
xrad xonly. GLAD will treat the azimuthal direction correctly if xonly is specified.

The error in treating the near-cylindrical paths as strictly cylindrical is very small. Consider Fig. 17.10.
A cross section of the beam is shown. If we constructed a beam with a perfectly uniform amplitude at the
start, then when the beam moves to the outer cylindrical element, the outer part of the beam, marked A, will
expand less than the inner part, marked B. Given that the wavefront is tilted by Δx across the beam, then the
ratio of amplitude A to amplitude B, after propagation to the outer cylinder, is 

relative amplitude , (17.2)

when we consider only the geometrical propagation. The effect would be twice this for intensity. This
asymmetry will alter the diffraction propagation only slightly. When the beam returns to the inner cylinder,
a geometrical representation would see the uniform amplitude restored. From this argument we see that the
effect of beam tilt is small for modest angles from strictly radial propagation.

17.2.1 Decentration and Tilts
Small decentration of the elements, in cylindrical wave propagation, leads to an aberration which is

constant axially and which varies azimuthally around the circumference. Small tips will introduce a phase
error that varies axially and has the same azimuthal variation as decentration. Figure 17.11a illustrates tilt
aberration of a radial beam and Fig. 17.11b illustrates decenter aberration of a radial beam. 

Fig. 17.9. A radius is specified for the exiting radius of the radial beam. GLAD propagates the distance past the cone 
tip and then does a geometric transformation to the radial mode.
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Fig. 17.10. A nearly cylindrical beam is shown reflecting between two cylindrical mirrors. The two edges of the beam 
are indicated by A and B. Edge A expands less than edge B in the upward path, leading to a slightly greater amplitude 
(the amplitude at the top has been renormalized for better legibility). This asymmetry will effect the diffraction 
propagation very slightly. Geometrically, the asymmetry is removed when the beam returns to the inner cylinder.

Fig. 17.11a. Phase plot of tilt aberration on a radial 
beam. The vertical direction corresponds to the 
azimuthal direction.

Fig. 17.11b. Phase plot of decenter aberration on a radial 
beam.
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17.3 Polarization
When light is expanded into a radial beam by an axicon, the effect on polarization is to be rotated with the
azimuth angle. If the light is reflected by a mirror in the radial path and returned to axial mode by a cone
pointing in the same direction as the original cone, the polarization rotation is canceled and the polarization
is well behaved. If the reconstructing cone is of opposite parity, the regenerated axial beam has its
polarization state rotated at twice the azimuthal angle with respect to the initial beam.

Consider taking an axial beam, going through any combination of axicons, and returning the beam to
axial form -- pointing in either direction. If the beam is not inverted by the optical path, then the polarization
state will be well behaved. This is readily understood from basic image rotation properties.

From the previous discussion, it is easily seen that when viewing the axicon ray path in a y-z plane, the
x-direction is always unchanged. If the y-direction is unchanged, i.e., the beam in not inverted by the axicon
paths, then the system mirror matrix must take the form of

. (17.3)

Either of these mirror systems has the a positive determinate for the (3,3) cofactor (see Table 11.1) and
is insensitive to rotation about the z-axis. The polarization will not be rotated. Not that the rotation properties
of refractive image inverting elements should not be considered in calculating the system calculation
because refractive elements do not change the polarization with the image. Many axicon systems will have
intermediate positions in which there is image rotation. If the diffraction distance in these regions is short,
then little harm may be done. If however the beam goes to the far-field with a disrupted polarization state,
the intensity pattern in the far-field will be greatly disturbed. If the polarization is rotating azimuthally, there
will be zero intensity in the center of the far-field.

17.4 Annular Beams
An axicon acting on a radial beam will create an annular beam with a cylindrical axis. The special case

when the radius of the cylindrical axis goes to zero the annular beam degenerates into an axial beam. If the
beam has no significant optical divergence, then an afocal model may be applied. An annular beam which
is essentially afocal may be treated as an axial beam for further propagation. The radial-to-annular
transformation may be treated as a remapping of the radial intensity distribution and the optical axis
redefined to be a simple line axis. GLAD uses an “afocal” operation mode to treat axicon operations as being
afocal. In afocal operation GLAD does not calculate the transformation of the surrogate beam parameters.
Also, shifts of the axicon along the axis are allowed. Fig. 17.12 illustrates the case of a left-shifted second
cone, which produces a ring-like intensity pattern. A right shift of the second cone produces a peak in the
intensity pattern of the regenerated axial beam. The image rotation properties are unchanged so the
polarization rotation properties are not affected by the longitudinal shifts of the axicons. Fig. 17.13.a shows
the intensity and Fig. 17.13b shows the polarization.  

If the second axicon is right-shifted, as shown in Fig. 17.14, the intensity is disrupted as illustrated in
Fig. 17.15.a with polarization behavior as shown in Fig. 17.15b.  
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If the return axicon is flipped over, as shown in Fig. 17.16, both the intensity and polarization will be
disrupted. Axicons are designated as left or right based on which direction the apex points. The first axicon
is left-shifted and the second is right-shifted so that the returning radial beam properly overlaps the second
axicon. After the second axicon the optical axis is a cylinder, establishing that the beam is of annular form.
The intensity is shown in Fig. 17.17a. The beam is inverted by the optical system, causing the polarization
state to be rotated, as shown in Fig. 17.17b. The rotation of polarization causes the far-field pattern to have
zero intensity on-axis as shown in Fig. 17.17c.   

Fig. 17.12. The return axicon is shifted to the left causing a donut shaped beam to be formed.

Fig. 17.13.a. Donut shaped beam formed by shifted 
axicon. Note small diffraction effects.

Fig. 17.13b. Polarization is returned to linear form. 
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Optical beams with significant optical power may be propagated through axicon system, as illustrated
in Fig. 17.18. Radial mode presents no special difficulties, except that a second axicon will, in general,
create an annular beam with a toroidal wavefront. GLAD uses a “focal” operating mode to be defined so
that a radial beam with optical power may be properly returned to axial form. In focal operation GLAD will
calculate the axicon axial position and left or right direction to properly return radial mode to axial mode
with the axicon/axial command. 

Fig. 17.14. In this example, a left axicon expands the beam into radial mode and the beam is returned to axial form 
by a right cone, leading to nonuniform intensity and disrupted polarization.

Fig. 17.15.a. Intensity after second left axicon. The shift 
to the right has resulted in nonuniform intensity.

Fig. 17.15b. The polarization is well behaved unlike the 
case of left and right axicon mirrors.
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In focal operation, the command axicon/annular will generate an annular beam with a toroidal
wavefront. Consider Fig. 17.19 with a general axial-to-radial-to-annular conversion. GLAD keeps track of
the reference position and the surrogate gaussian properties (in FOCAL operation) through the system. In
radial mode the reference position is measured with respect to the original optical axis. 

The early work in annular resonators used a fast-Hankel transform propagator. This propagator is useful
only for essentially afocal. It allows propagation of axial beams which are radially symmetric or nearly
radially symmetric. In the mid 1970's diffraction calculations were so expensive that going to a radially
symmetric propagator made sense. In the 1990's large arrays could be propagated inexpensively and the
need for a special radial propagator became less pressing. The Fast-Hankel transform is not as convenient
as the FFT. The Fast-Hankel transform suffers from a singularity at the center, tends to “sag” in the outer

Fig. 17.16. In this example, a left axicon expands the beam into radial mode and the beam is returned to axial form 
by a right cone, leading to nonuniform intensity and disrupted polarization.

Fig. 17.17a. The intensity is strongly peaked in the 
center because of the use of the right cone rather than the 
same left cone.

Fig. 17.17b. The polarization is strongly disrupted by 
the use of a right axicon in the return path.
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regions, has nonuniform sampling, and is significantly slower than an equivalent size one-dimensional
array. The fast-Hankel transform was incapable of treating strong toroidal wavefronts. A limited capability
to represent azimuthal variation exists by maintaining and propagating several azimuthal slices. If more than
few azimuthal slices are used, it becomes more efficient to use a standard square array.

The fast-Hankel transform was intended to model an annular laser with a chemical medium in the
center. An annular beam propagating along a path with a large center obscuration is not properly represented
by the Hankel transform. One should perform a split-step calculation with interposed steps of Hankel
propagation and obscuration. In many ways the fast-Hankel transform solved the wrong problem. Because
of the central obscuration, the intensity structure in the center of the beam, which the Hankel transform will
predict, will not be allowed to form. What was needed was not a radially symmetric propagator but a
torioidal propagator.

Fig. 17.17c. Expanded view of far-field image showing ring image due to polarization aberrations.

Fig. 17.18. A noncollimated beam may be propagated correctly in FOCAL operation. The divergence of the beam is 
propagated through the system and leads to a toroidal wavefront in annular mode.
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The radial wave propagator is much closer to a toroidal wave propagation than is the Hankel transform.
The toroidal wave, by stationary phase arguments, has diffraction effects primarily determined by the local
complex amplitude. The radial propagator fits this geometry very well. The phase curvature of the toroidal
wavefront prevents distant points from contributing to the local diffraction effects. The toroidal wavefront
differs from the radial wavefront in that the contribution of the outer radial zones is greater than the inner
radial zones, as shown in Fig. 17.20. This may be largely accounted for in diffraction propagation by area
weighting the intensity before and after taking a diffraction step. This particularly important if the beam is
flipped over by the toroidal equivalent of a spatial filter where the light goes through a ring focus, as
demonstrated in Ex75i and illustrated in Fig. 17.21.  

17.5 Polarization in Reflaxicon and Waxicon Configurations
The configuration of inner and outer reflective axicons has important effects on the polarization. In the

case of an ordinary collimated beam with linear horizontal polarization incident on a left axicon mirror, a
radial beam is created with polarization as shown in Fig. 17.22. Two left (or two right) reflecting axicons
make a reflaxicon, which has similar optical characteristics as a rhomb prism. The polarization states rotates
clockwise π when moving around the radial mode starting in the +y-direction. A second left axicon leaves
the polarization state unchanged as displayed in radial-azimuth format and linearly polarized when shown
in conventional form. A left-right pair (or right-left) pair of reflecting axicons constitute a waxicon
configuration (so named because of the “w” shape created). This configuration is illustrated in Fig. 17.23,
the radial mode properties are the same as for Fig. 17.22. Reflection from a right axicon flips the polarization
about the radial direction and causes the rotation to change from +2π to –2π, as displayed in radial-azimuth
format. In conventional rectangular display, the polarization rotates –4π.  

17.6 Resonators with Axicon Elements
Axicon elements have been suggested to take advantage of certain laser media which favors an annular

gain regions. Many of the devices that were proposed in the 1970's were done without proper consideration
of the properties of the optical axis and the image rotation. It is relatively easy to distinguish well behaved

Fig. 17.19. In focal operation the reference position is measured radially with respect to the optical axis in radial 
mode. Fig. (a) shows the axial mode with Zreff = 0 to the left. In Fig. (b) Zreff is measured with respect to the optical 
axis. The center of curvature is shifted negatively. In Fig. (c) the beam has expanded to the next axicon mirror. In 
Fig. (d), Zreff is measured along the optical axis. The position Zreff = 0 has been displaced by the radius of the 
annular axis with respect to the optical axis.
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from poorly behaved devices simply on the basis of first order properties and the additional consideration
of the need for limiting apertures to establish good mode selectivity. In a round trip through the device, we
want the optical axis to return to axial form and also that there be no beam rotation, as viewed in the y-z
plane. It should be noted that apertures in radial or annular mode, do not limit the azimuthal modes and,
therefore, the azimuthal modes will be degenerate if there is no limiting in an axial mode. For good mode
discrimination, it is essential to have a limiting aperture in an axial path.

Fig. 17.20. Both radial and annular beams are represented in radial-azimuthal form with the azimuthal direction 
corresponding to the y-direction and filling the rectangular array with no guard band.

Fig. 17.21. Reflaxicon-waxicon with intermediate ring focus. The refractive optics in the annular path are toroidal 
lenses which flip the intensity about the cylindrical axis but do not change the polarization.
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There are numerous configurations resonators which have well behaved properties. Figs. 17.24 and
17.25 show two forms which have good properties. Two-axicon arrangements consisting of axicons of the
same orientation (Fig. 17.24) are frequently called reflaxicons, but Iwaxicons (Fig. 17.25) if the axicons are
of opposite orientation. Both configurations have good properties because the beam is not inverted (as
observed in the y-z plane) in going through either system and there are limiting apertures in the axial legs.
These systems will perform very similarly to the equivalent systems without axicon elements. The
reflaxicon system has good polarization properties in the annular leg (Fig. 17.26). The polarization is
aligned with the radius for all azimuthal positions, this gives the best propagation performance for toroidal
beams.

For the waxicon system the polarization is rotated at twice the azimuthal angle (Fig. 17.27). Since the
propagation effects in the annular leg are generally small, the disrupted polarization is not likely to cause
significant effects. Most gain media is insensitive to the polarization state and the near field diffraction will
be little affected by the variable polarization.   

Normally a combination of a reflaxicon and an waxicon gives poor performance: nonuniform intensity
and disrupted polarization. Figure 17.21 illustrates a reflaxicon-waxicon system with an intermediate ring
focus that flips the beam. This corrects the image properties of the system and the intensity is uniform, as
shown in Fig. 17.28. The polarization properties are not altered by the refractive system, so the polarization
is disrupted in exactly the same form as without the ring focus (Fig. 17.29).

Fig. 17.22. A circular beam with horizontal linear polarization is reflected off a left axicon mirror, forming a radially 
expanding beam (radial mode). For radial-azimuth display, the beam is stretched into a rectangular array with the 
vertical direction spanning –πr to +πr. The polarization state will be rotated counterclockwise for one cycle in the 
+y-direction. After reflection from a second left axicon, the polarization state will retain the same state of rotation 
and will be linear in conventional view.
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Fig. 17.23. Same as Fig. 17.22 except that the 2nd axicon is a right axicon and reverses the propagation direction. 
The true aperture shape now rotates counterclockwise leading to a 4π rotation when viewed in the conventional view 
for one cycle in the +y direction.

Fig. 17.24. Resonator configuration of two reflaxicons which generates an annular beam and after recompaction 
reforms as an axial beam.
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17.7 More General Axicon Surfaces
Figure 17.30 shows a more general axicon configuration with powered axicons to introduce an internal

focus in the radially converging leg. This subsystem flips the image so that the compacted leg will be
properly reconstructed in both intensity and polarization state by the final right axicon. The optical axis is
shown by the dashed line (center line style). The axis line is at the outer radius through the two waxicon
pairs composing the front and back end-mirror assemblies. 

This system requires more general mirrors than the simple 45º flat mirror profiles used earlier in this
chapter. Axicon profiles with optical power and aspheric figure correction are implemented in GLAD by
using a global mirror definition followed by an axicon irradiance remapping. The global mirror is used in

Fig. 17.25. Resonator configuration of two waxicons of opposite orientation. Note that the optical axis is on the 
outside of the annular region. A resonator could be made may putting concave or convex mirrors in the axial region.

Fig. 17.26. Polarization is well behaved in annular path 
for reflaxicon of Fig. 17.22.

Fig. 17.27. Polarization in annular leg rotates at twice 
the azimuth angle for waxicon of Fig. 17.23.
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the form mirror/global/conic/radial so that the aberration is computed only along a single
radius in the x-direction and applied in all azimuthal directions equally. The axicon command is called with
the nomirror parameter or parameter modifier to include only the axicon remapping. The mirrors should

Fig. 17.28. Intensity in recompacted axial beam of 
system of Fig. 17.21 is the same as the starting form.

Fig. 17.29. The polarization in the recompacted axial 
beam after configuration of Fig. 17.21 is rotated at twice 
the azimuth angle.

Fig. 17.30. Resonator configuration of two reflaxicons which generates an annular beam and after recompaction 
reforms as an axial beam.
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be placed with the vertex at the axis line as shown in Fig. 17.30. The aberration polynomials should be
defined in the vertex coordinate system of the mirror. Given an axial definition of the axicon surface of the
form 

, (17.4)

where  is an offset of the polynomial description. We may equate this expression to a vertex coordinate
system. 

. (17.5)

Without loss of generality we may set the conic term to  making the base surface parabolic with
additional aspheric terms. Piston and tilt terms are added to better match the axis-based polynomial
description:

. (17.6)

The equation for the vertex line is, see Fig. 17.31:

. (17.7)

We can solve for the coefficients of Eq. (17.6) by the following steps (see Fig. 17.31):
1) For a number of values x, find  from Eq. 17.4.

2) Find , where 

3) Find v from Eq. (17.6) using t. 

4) Find 

5) Minimize  for a range of x-points by solving for the coefficients of Eq. (17.6).

See Ex75k for an illustration of more general axicons.
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Fig. 17.31. An axicon surface may be defined by global coordinates from the point by global polynomials or from 
the vertex coordinate system at Xdec with coordinates.

� �,( )

�
�

� �
�

,( )

t

v

�
�

� �
�

�( )

�
�

���	 �
�

�( )

�
�

� ���	t

x

vertex of mirror
Jump to: ,  Commands  Examples



18. Partially Coherent Imaging

Partially coherent imaging has generally been investigated using geometrical optics. The speed of
contemporary computers makes it quite reasonable to use a full diffraction analysis of a partially coherent
imaging system, such as the one illustrated schematically in Fig. 18.1 and modeled in Example 83. The full
diffraction analysis allows consideration of both near- and far-field diffraction. Using GLAD one may input
essentially any type of optics and may observe the optical beam characteristics at any point in the system in
a great variety of ways. As discussed below, no special modifications are needed to model partial coherence;
the system is modeled as a standard coherent system, taking a single source point at a time, combined with
a simple summation of the irradiance pattern due to the source point. The standard coherent propagation
algorithms are thoroughly tested, so we may have confidence in the result. 

While the calculation methods are simple, characterization of the errors in partially coherent imaging is
somewhat difficult because, unlike purely coherent or purely incoherent imaging, we can not characterize
the system by linear systems methodology such as the point response or frequency response. We must resort
to examining the partial coherent images of selected objects of interest. The nonlinearity of partial coherent

Fig. 18.1. The optical system consists of a condenser mirror, a tipped sphere, and a relay mirror of Schwartzchild 
design. The source is imaged into the pupil of the relay mirror. The beam is started at the conjugate of the object mask 
and is imaged by the condenser mirror to the object mask, where the transmission mask is located,. The beam is 
converging at the object mask and forms a point image at the pupil of the relay lens. A multi-bar pattern will form a 
central lobe and side lobes at the pupil of the relay lens. Different source points are simulated by tilting the initial 
beam where it is created at the conjugate of the object mask, as shown by the off-axis source point indicated as dotted 
lines.
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imaging makes it difficult to be specific about accuracy and sampling requirements. We may, however, test
the calculation method by evaluating it at the purely coherent and purely incoherent limits.

There are two methods which may be considered for performing partially coherent imaging: time or
source area sampling. For time sampling, we consider that the source is a finite area of sufficient spectral
bandwidth and is observed over some finite integration time. Using GLAD we can model finite spectral
bandwidth for the finite source by using a moving temporal average of spatially delta-correlated random
complex amplitude patterns. At each time sample, the complex amplitude distribution representing the
current state of the source is propagated through the optical system to the image plane where an irradiance
detector of finite bandwidth simulates the response of the optical recording medium. The finite bandwidth
of the detector may be modeled by a moving, weighted temporal average of the irradiance distribution at the
image plane. Numerical experiments with this type of direct temporal modeling using GLAD showed that
for typical problems many hundreds of time samples were required to achieve satisfactory calculation of
incoherent images.

A more efficient method, developed by H. H. Hopkins and used by D. S. Goodman is to consider that
the source consists of incoherent points [1–2]. We find the irradiance image of each source point separately
and then sum all of these irradiance images. Since we are performing a numerical calculation we must use
a finite number of sample points for the source. Let the source points be represented by delta functions of
the form , the optical system by an operator H, the complex amplitude at the image plane associated
with each source point by , and the time averaged irradiance at the image plane by .

 and  are the coordinates of the ith source point. The operator H includes all apertures, optical elements,
diffraction, object mask, etc. which constitute the optical system. This operator treats the light as being
strictly coherent and, therefore, uses the well-tested coherent propagation features of GLAD. For each ith
source point, the complex amplitude distribution in the image plane is determined. The final image plane
irradiance is found by

. (18.1)

Implementation of this equation is very easy: the coherent propagation represented by H uses standard
features and may be evaluated by well-known Fourier optics methods, the incoherent sum is simple to
perform. About the only ways to make a mistake are to define the optical prescription incorrectly (this can
occur with any method) or to have inadequate source sampling. The simplicity of the Hopkins’ source
sampling method leads to a simple procedure for validation. We assess the performance of a single source
point to be sure the system model has been described correctly, i.e., that we have defined the optical
prescription properly. We can also evaluate the sufficiency of the source sampling by calculating the image
of a source which fills the pupil of the relay lens ( ). Consider circular regions of the source defined
by a normalized source radius variable 

(18.2)

δ xi yi,( )
a x′ y′ xi yi, , ,( ) I x y,( )

xi yi

1
N---- H δ xi yi,( )[ ] 2


1
N---- a x′ y′ xi yi, , ,( ) 2
 I x y,( )≈=

σ 1=
rs

I x y,( ) 1
N---- a x′ y′ xi yi, , ,( ) 2


a rs x y, ,( ) 2πrs rsd
0

ε

 a rs x y, ,( ) 2πrs rsd
ε

σ

 a rs x y, ,( ) 2πrs rs .d
σ

1

+ +

≈

≈

Jump to: ,  Commands  Examples



363
The radial region from 0 to an infinitesimal radius ε corresponds to coherent illumination. The region
from 0 to some finite radius σ (incorporating the coherent illumination region) corresponds to partially
coherent imaging. Integration out to  corresponds to full relay pupil filling and gives essentially
incoherent imaging. Since full filling of the pupil necessarily incorporates the partial filling regions
corresponding to partial coherence, we believe a satisfactory incoherent image (calculated in this way)
implies satisfactory partial coherence.

Because each object mask results in somewhat different sampling requirements, it is difficult to derive
a comprehensive rule that will hold for all mask and source geometries. For a specific mask and source
geometry, it is quite easy to determine the adequacy of a selected sampling density simply by trying a greater
number of sample points. If denser sampling does not change the results of the calculation, the original
sampling density is adequate. If we see little peaks on square bar patterns ostensibly imaged incoherently,
we know that the sampling density is not sufficient. To accurately assess the errors for a given mask, we can
calculate the  distribution and compare it with convolution of the object mask with the incoherent
point spread function.

Hopkins calculated the modulation in the image plane of rectangular bar objects of various periods
using several σ values [1]. Hopkins assumed the rectangular bar target was of infinite extent. This has been
approximated by using thirteen bars in Example 83c. We selected the period of the bar pattern to be at 0.5
of the limit of the coherent transfer function. This is the same as Hopkins  parameter. Figure 18.2
shows the thirteen-bar mask. Figure 18.3 shows the diffraction pattern in the pupil of the relay lens due to
a single source point. The side bands represent the fundamental frequency of the mask. For Hopkins’s bar
pattern of infinite width, the principle lobe and side bands are of infinitesimal width. Figure 18.4 shows the
modulation in a single cycle for σ = 0, 0.7, and 1.0 in good agreement with Hopkin’s result using an infinite
length rectangular pattern [1]. We used the source sampling pattern illustrated in Example 83 for these
calculations. About 49 sample points over the source area gives a good approximation to full incoherence.  

Fig. 18.2. Thirteen-bar target set to a period of 0.5 of the 
coherent diffraction limited spatial frequency.

Fig. 18.3. Irradiance at relay pupil due to a single source 
point and the thirteen bar pattern with spatial frequency 
equal to 0.5 of the coherent diffraction limit.

rs 1=
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σ 0.5=
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Fig. 18.4. Modulation at σ = 0.0, 0.7, 1.0 for 0.5 of the coherent diffraction limited frequency (ω = .5), for a thirteen 
bar pattern. This compares very well with the ω = 0.5 bar pattern of infinite length calculated by Hopkins [1].
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19. Thermal and Stress Effects in Component

GLAD can calculate the thermal response of refractive components including the effects of mounting
materials and fluids in contact with the solid materials as well as the birefringent effects of mechanically
and thermally induced stress.

19.1 Thermal Effects
The general expression for heat conduction in the presence of an internal heat source is

, (19.1)

where ρ is the density, c is the heat capacity, T is the temperature, t is time, κ is the thermal conductivity,
and Q is an internal heat source. In 1D geometry, Eq. (19.1) yields,

. (19.2)

19.1.1 Thermal Impulse Response
The thermal inpulse response function is useful to check the accuracy of numerical calculations.

Consider the solution:

, (19.3)

 [C], (19.4)

where  in units of [cm2/s]. Note that  is unitless.  has units [C-s].

 [C/s], (19.5)

. (19.6)
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(19.7)
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(19.12)

(19.13)

 [C/s], (19.14)

. (19.15)
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(19.18)

(19.19)

(19.20)

 [C/s], (19.21)
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, (19.24)
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(19.29)

(19.30)
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(19.36)

(19.37)

(19.38)

(19.39)

(19.40)

(19.41)

(19.42)

where  and  is the temperature impulse in degree-seconds. Note that  is unitless.
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, (19.44)

, (19.45)
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, (19.46)
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, (19.48)

, (19.49)
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, (19.51)

, (19.52)
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19.1.2 Setting Up Numerical Solution
In GLAD the medium is represented by a two-dimensional array of data or a collection of two-

dimensional arrays to form a three-dimensional array. The rectangular arrangement of data establishes a
natural rectangular node system for finite element solution.

Consider two small three-dimensional regions, which may be of different materials. See Fig. 19.1. Heat
conduction for these two interacting regions obeys (approximately) the equations 

, (19.55)

,

where

(19.56)

is the mean thermal conductivity. By conservation of energy

, (19.57)

where E is the total energy. Conservation of energy allows us to separate the coupled differential equations:

Fig. 19.1. Two interacting elemental regions in a rectangular node structure for finite element calculations.
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, (19.58)

.

Equation 19.58 may be written in the form  with the solution  =
. We have the solutions,

, (19.59)

.

A set of finite difference equations, which conserve energy, are

, (19.60)

. (19.61)

For rotationally symmetrical problems, consider two thin annular regions, which may be of different
materials. Heat conduction obeys the equation

. (19.62)

The derivatives may be expressed in term of the previous point  (left), current point  (center), and 
(right). We have the approximate expressions

, (19.63)
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. (19.64)

Now considering only the interaction between  and  (interaction between  and  has already been
considered when  was the current point), we have

, (19.65)

.

In finite difference form, Eq. (19.65) becomes

, (19.66)

.

Equation (19.66) does not strictly conserve energy. Conservation of energy requires,

, (19.67)

but Eq. (19.66) yields a finite energy error of

. (19.68)

This problem is corrected by making the approximations

 and , (19.69)

, (19.70)
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. (19.71)

Conservation of energy, Eq. (19.67), allows us to separate the coupled differential equations:

, (19.72)

,

, (19.73)

.

A set of finite difference equations, which conserve energy, are

, (19.74)

. (19.75)

The time constant for a given material with a particular spatial sampling is

. (19.76)

For a given choice of spatial sampling, the materials will differ by the ratio , with thermal influence 

function . When different materials are in contact, the temporal sampling must be 
sufficiently short to resolve the shortest time constant.
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In GLAD, fluids are assumed to maintain their temperature independently of heat flow across the
boundary. As such, a fluid is characterized by its temperature and convection coefficient. Most elements are
in contact with air. Other fluids may be forced flow air, water, forced flow water, etc. The temperature
change due to convection obeys the equation,

, (19.77)

where Δx is the length of the incremental region (perpendicular to the convection surface)

, (19.78)

. (19.79)

The time constant for convection is

, (19.80)

similar to Eq. 19.76.
In GLAD, a number of materials may be combined to represent glass (or similar transparent material),

opaque material for mounting materials, and fluid such as air or water acting as a heat sink. Fig. 19.2
indicates schematically material representation. 

19.2 Thermo-Optical Effects
Nonuniform temperature distributions induce phase effects in windows and lenses due to local changes

in the index of refraction and expansion coefficient. To second order, the index of refraction can be
represented by

, (19.81)

where  is the index of refraction and  is the reference temperature. The change in thickness of the
element is determined to second order by,

. (19.82)
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The term  is the thermal coefficient of expansion. The optical phase due to temperature changes in
a window is

. (19.83)

The optical power of a surface is

, where . (19.84)

Including the differential effects of index and radius of curvature from Eqs. (19.81) and (19.82) respectively
we have the relative change in optical power of a surface,

, (19.85)

where  is the irradiance-averaged temperature.

Fig. 19.2. The medium for thermal analysis is divided into sections consisting of rectangular arrays. A single section 
is shown above. In this case, the center region is the optical material, Material 2 is a mounting material such as 
aluminum, the outer material may be air. A thick element may be represented by several such sections. Solid 
materials may have internal heat sources. The laser beam passing through the refractive material can also inject heat 
into the optical material due to absorption. Thermal conduction redistributes the heat transversely within a section 
and axially between adjacent sections. Thermal convection causes heat to be lost into the air. The mesh is build using 
the standard GLAD array architecture.
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The optical material may have bulk absorption such that the irradiance is decreased according to the
equation

. (19.86)

The change in temperature, averaged over the axial length L of the section, is

, (19.87)

where Δt is the time of interaction.

19.3 Thermally Induced Birefringent Stress
Temperature changes may induce stress in optical elements. We shall assume that the component is in

a properly designed kinematic mount so that the mount does not impose stress on the part. For example a
window may be held supported in a compliant mount that allows for thermal expansion. A mirror may be
supported with the reflective face registered to three hard points which constrain the face with respect to tip
and tilt but do not resist expansion or contraction. Consequently thermally induced stresses are generated
within the optical element and from the boundaries of the element. This allows for a simplification of the
calculation in that thermally induced strains do not cause shear stresses.

A section of solid material will distort because of imposed stress (outward pressure, force per unit area),
indicated in Fig. 19.3. Stresses induces strain (displacement per unit length, dimensionless) according to the
tensor equation [1]: 

Fig. 19.3. Elastic distortion of a cube by horizontal stress. The cube elongates in the horizontal direction according 
to  and compresses in the orthogonal directions by .
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. (19.88)

where ε is the strain vector (with the γ’s being the shear strain components), σ is the imposed stress vector
(with the τ’s being the shear stress components), E is Young’s Modulus (units of inverse pressure), and μ is
Poison’s Ratio (dimensionless). As shown in Fig. 19.3, strain is in the direction of stress for the diagonal
terms (tension stress leads to expansion) and in the opposite direction for the off-diagonal terms. In the
general case, we would need to consider shear stress and shear strain. However, heat induced stress has no
shear component and an isotropic material will not couple compressive stress into shear stress. A poorly
designed support can potentially apply strong forces that may induce shear effects but, we shall consider
only well designed mounting that does not apply significant forces onto the part. We may, therefore,
simplify the development by neglecting shear effects. If we know strains we may calculate the imposed
stress

, (19.89)

, (19.90)

where D is the stress/strain or constitutive matrix

. (19.91)
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We may compute the strain energy for this section of the solid by

incremental energy per unit volume . (19.92)

The total strain energy is

. (19.93)

Given some initial strain distribution, the system will relax by reducing the strain energy while
maintaining the total strain to be constant:

. (19.94)

19.3.1 Governing Equations Of Strain
For a body subject to distortions, the three components of displacement may be represented by three-

dimensional functions:

, , and . (19.95)

The strain-displacement relations are:

, , and . (19.96)

and shear components of strain-displacement are:

, , and . (19.97)

We may write the six stress-displacement functions as:

, , and , (19.98)

, , and , (19.99)

where

, , and . (19.100)

The three equilibrium equations are:
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, (19.101)

,

,

where , , and  are applied pressures. We may write the effect of temperature as

. (19.102)

The temperature gradients do not directly drive shear strain

. (19.103)

Expanding Eq. (19.103) we have the stresses induced by strains and temperatures
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, (19.105)

. (19.106)

The stresses, shears, and pressures satisfy:

, (19.107)
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.

where , , and  are external forces. Considering only thermal effects, these forces are zero. Note that
we may consider the effect of thermal gradients to be equivalent to mechanical external forces as discussed
below. The shears may be written in terms of derivatives of displacement:

, (19.108)

,

.

Expanding Eq. (19.104) we have the x-component of stress

. (19.109)

Differentiating Eq. (19.109) we have

. (19.110)

The other two terms of Eq. (19.107) are

, (19.111)

. (19.112)

The equilibrium equation for the x-direction is, therefore,
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(19.113)

The other two equations for y- and z-directions are found by cyclically by permuting x, y, and z and u, v, and 
w. We may assume

to simplify Eq. (19.113)

(19.114)

(cyclical for  and ). The thermal effects may be considered to be effectively the same as
mechanical pressures, such as those included in the equilibrium equations, Eq. (19.107). The thermal
equivalent to mechanical pressures are

, cylical for (19.115)

We may convert the equations above to two-dimensional form by specifying , , and
.  implies . The two-dimensional equations are:

, (19.116)

. (19.117)

Expanding Eq. (19.103) we have the stresses induced by strains and temperatures

, (19.118)
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. (19.119)

The stresses, shears, and pressures satisfy:

, (19.120)

, (19.121)

where , and , are external mechanical forces that are zero for strictly thermal effects.

, (19.122)

. (19.123)

Simplifying the above equations and assuming no external forces,

, (19.124)

. (19.125)

These equations may be evaluated numerically in terms of nearest neighbors of a point .
The three-dimensional equilibrium equations are of the form:

(19.126)

(cyclical for ).
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, (19.127)

, , , and . (19.128)

19.3.1.1 Finite Difference Solution, 3D
The derivatives may be evaluated by finite difference equations. The ensemble of 27 points in the cube of
the local neighborhood may be identified by relative indices , where . The C-
coefficients are evaluated at (0,0,0):

, (19.129)

, (19.130)

, (19.131)

, (19.132)

, (19.133)

. (19.134)

The solution for  that forces compliance with the equilibrium equation is

(19.135)
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4ΔxΔz-------------------------------------------------------------------------------------------------------------------------------- C3
u 0 1 0, ,( ) u 0 1– 0, ,( )+

Δy2--------------------------------------------------------

C3
u 0 0 1, ,( ) u 0 0 1–, ,( )+

Δz2-------------------------------------------------------- Px
′ 0 0 0, ,( )

+

+ +

+ +  .

=
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We use the generalized pressure  to include mechanical and temperature gradient effects.

, (19.136)

(similarly for  and  with cyclical permutation of x, y, and z and u, v, and w).

(19.137)

, (19.138)

(19.139)

. (19.140)

As we will represent the volume by x,y planes along the z-axis, we resort the terms according to z-value.

(19.141)

Px
′

Px
′ Px 0 0 0, ,( ) C4

T 1 0 0, ,( ) T 1– 0 0, ,( )–
2Δx--------------------------------------------------------+=

v 0 0 0, ,( ) w 0 0 0, ,( )

v 0 0 0, ,( ) 1
2C1 4C3+------------------------- C1

v 0 1 0, ,( ) v 0 1– 0, ,( )+
Δy2-------------------------------------------------------

C2
w 0 1 1, ,( ) w 0 1 1–, ,( )– w 0 1– 1–, ,( ) w 0 1– 1, ,( )–+

4ΔyΔz--------------------------------------------------------------------------------------------------------------------------------

C2
u 1 1 0, ,( ) u 1– 1 0, ,( )– u 1– 1– 0, ,( ) u 1 1– 0, ,( )–+

4ΔyΔx---------------------------------------------------------------------------------------------------------------------------- C3
v 0 0 1, ,( ) v 0 0 1–, ,( )+

Δz2-------------------------------------------------------

C3
v 1 0 0, ,( ) v 1– 0 0, ,( )+

Δx2------------------------------------------------------- Py
′ 0 0 0, ,( )

+

+ +

+ +  ,

=

Py
′ Py 0 0 0, ,( ) C4

T 0 1 0, ,( ) T 0 1– 0, ,( )–
2Δy--------------------------------------------------------+=

w 0 0 0, ,( ) 1
2C1 4C3+------------------------- C1

w 0 0 1, ,( ) w 0 0 1–, ,( )+
Δz2----------------------------------------------------------

C2
u 1 0 1, ,( ) u 1– 0 1, ,( )– u 1– 0 1–, ,( ) u 1 0 1–, ,( )–+

4ΔzΔx----------------------------------------------------------------------------------------------------------------------------

C2
v 0 1 1, ,( ) v 0 1– 1, ,( )– v 0 1– 1–, ,( ) v 0 1 1–, ,( )–+

4ΔzΔy-------------------------------------------------------------------------------------------------------------------------- C3
w 1 0 0, ,( ) w 1– 0 0, ,( )+

Δx2----------------------------------------------------------

C3
w 0 1 0, ,( ) w 0 1– 0, ,( )+

Δy2---------------------------------------------------------- Pz
′ 0 0 0, ,( )

+

+ +

+ +  ,

=

Pz
′ Pz 0 0 0, ,( ) C4

T 0 0 1, ,( ) T 0 0 1–, ,( )–
2Δz--------------------------------------------------------+=

u 0 0 0, ,( ) 1
2C1 4C3+------------------------- C2

w 1– 0 1–, ,( ) w 1 0 1–, ,( )–
4ΔxΔz---------------------------------------------------------------- C3

u 0 0 1–, ,( )
Δz2--------------------------

C2
v 1 1 0, ,( ) v 1– 1 0, ,( )–

4ΔxΔy------------------------------------------------------- C3
u 0 1 0, ,( )

Δy2----------------------- C1
u 1 0 0, ,( ) u 1– 0 0, ,( )+

Δx2-------------------------------------------------------- Px
′ 0 0 0, ,( )

C2
v 1– 1– 0, ,( ) v 1 1– 0, ,( )+

4ΔxΔy------------------------------------------------------------- C3
u 0 1– 0, ,( )

Δy2--------------------------

C2
w 1 0 1, ,( ) w 1– 0 1, ,( )–

4ΔxΔz--------------------------------------------------------- C3
u 0 0 1, ,( )

Δz2-----------------------

+

+ + + +

+ +

+ +  ,

=
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(19.142)

(19.143)

The variable material terms contain only first derivatives and are independent of the center point.

19.3.2 Thermal Stress in a Plane: Two-dimensional Solution
The two-dimensional solution may be derived as a special case of the three-dimensional solution, or

directly from the two-dimensional form of the fundamental equations:

Hooke’s Law, . (19.144)

Hooke’s Law with thermal driving forces, . (19.145)

Strains induced by local stresses and local temperatures are found by inverse Hooke’s Law:

inverse Hooke’s law, . (19.146)

Expanding the matrix formulation into two equations we have

v 0 0 0, ,( ) 1
2C1 4C3+------------------------- C– 2

w 0 1 1–, ,( )
4ΔyΔz--------------------------- C3

v 0 0 1–, ,( )
Δz2-------------------------- C2

w 0 1– 1–, ,( )
4ΔyΔz------------------------------

C1
v 0 1 0, ,( )

Δy2---------------------- C2
u 1 0 0, ,( ) u 1– 1 0, ,( )–

4ΔyΔx------------------------------------------------------- C3
v 1 0 0, ,( ) v 1– 0 0, ,( )+

Δx2------------------------------------------------------- Py
′ 0 0 0, ,( ) C1

v 0 1– 0, ,( )
Δy2--------------------------

C2
u 1– 1– 0, ,( ) u 1 1– 0, ,( )–

4ΔyΔx--------------------------------------------------------------

C2
w 0 1 1, ,( )

4ΔyΔz------------------------ C3
v 0 0 1, ,( )

Δz2---------------------- C2
w 0 1– 1, ,( )

4ΔyΔz---------------------------–

+ +

+ + + + +

+

+ +  ,

=

w 0 0 0, ,( ) 1
2C1 4C3+------------------------- C– 2

v 0 1 1–, ,( )
4ΔzΔy-------------------------- C2

u 1– 0 1–, ,( ) u 1 0 1–, ,( )–
4ΔzΔx-------------------------------------------------------------- C1

w 0 0 1–, ,( )
Δz2---------------------------

C2
v 0 1– 1–, ,( )

4ΔzΔy-----------------------------

C3
w 0 1 0, ,( )

Δy2------------------------ C3
w 1 0 0, ,( ) w 1– 0 0, ,( )+

Δx2---------------------------------------------------------- Pz
′ 0 0 0, ,( ) C3

w 0 1– 0, ,( )
Δy2---------------------------

C2
v 0 1 1, ,( )

4ΔzΔy---------------------- C2
u 1 0 1, ,( ) u 1– 0 1, ,( )–

4ΔzΔx------------------------------------------------------- C1
w 0 0 1, ,( )

Δz2------------------------ C2
v 0 1– 1, ,( )

4ΔzΔy--------------------------–

+ +

+

+ + + +

+ + +  .

=

σx

σy

τxy

E
1 μ+( ) 1 μ–( )

-----------------------------------

1 μ 0
μ 1 0

0 0 1 μ–( )
2-----------------

εx

εy

γxy

=

σx

σy

τxy

E
1 μ+( ) 1 μ–( )

-----------------------------------

1 μ 0
μ 1 0

0 0 1 μ–( )
2-----------------

εx αT–
εy αT–
γxy

=

εx

εy

γxy

1
E---

1 μ– 0
μ– 1 0
0 0 2 1 μ+( )

σx

σy

τxy

αT
αT
0

+=
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, (19.147)

, (19.148)

. (19.149)

The equilibrium equations define the steady-state conditions (from 19.147 and 19.148) when the
material has time to relax:

, (19.150)

. (19.151)

The strain-displacement relations in 2D are:

, , and . (19.152)

We may write the equilibrium equations in terms of strains by replacing stress values with strain values
according to Hooke’s Law

, (19.153)

, (19.154)

From Eqs. (19.150), (19.153), and (19.154)

, (19.155)

(cyclical for and ).
Again assuming

σx
E

1 μ+( ) 1 μ–( )
----------------------------------- εx μεy+( ) EαT

1 μ–( )
-----------------–=

σy
E

1 μ+( ) 1 μ–( )
----------------------------------- μεx εy+( ) EαT

1 μ–( )
-----------------–=

τxy
E

2 1 μ+( )
---------------------γxy=

x∂
∂σx

y∂
∂τxy Px+ + 0=

y∂
∂σy

x∂
∂τxy Py+ + 0=

εx x∂
∂u= εy y∂

∂v= γxy y∂
∂u

x∂
∂v+=

x∂
∂σx E

1 μ+( ) 1 μ–( )
----------------------------------- ∂2u

∂x2-------- μ ∂2v
∂x∂y------------+

 
 
  Eα

1 μ–( )
----------------- x∂

∂T–=

y∂
∂τxy E

2 1 μ+( )
--------------------- ∂2v

∂y∂x------------ ∂2u
∂y2--------+

 
 
 

=

E
1 μ+( ) 1 μ–( )

----------------------------------- ∂2u
∂x2-------- μ ∂2v

∂x∂y------------+
 
 
  E

2 1 μ+( )
--------------------- ∂2v

∂y∂x------------ ∂2u
∂y2--------+

 
 
  Eα

1 μ–( )
----------------- x∂

∂T–+ 0=

x y, u v,
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,

, (19.156)

(cyclical for and ).
Writing Eq. (19.156) in terms of three C-coefficients, we have

, (19.157)

, ,  and . (19.158)

19.3.2.1 Finite Difference Solution, 2D
The ensemble of nine points in the square of the local neighborhood may be identified by relative

indices such that , where . The C-coefficients are evaluated at (0,0)

, (19.159)

, (19.160)

, (19.161)

, (19.162)

(cyclical for ).
The finite difference solutions are

∂
∂x----- ∂

∂y----- ∂
∂y----- ∂

∂x-----=

E
1 μ+( ) 1 μ–( )

-----------------------------------∂2u
∂x2-------- E

2 1 μ–( )
-------------------- ∂2v

∂x∂y------------ E
2 1 μ+( )
---------------------∂2u

∂y2-------- Eα
1 μ–( )

----------------- x∂
∂T–+ + 0=

x y, u v,

C1
∂2u
∂x2-------- μC1 C2+( ) ∂2v

∂x∂y------------ C2
∂2u
∂y2-------- Px C3 x∂

∂T+ + + + 0=

C1
E

1 μ+( ) 1 μ–( )
-----------------------------------= C2

E
2 1 μ+( )
---------------------= C3

Eα
1 2μ–( )

--------------------–= Px 0=

i j,( ) i j, 1– 0 1, ,=

∂2u
∂x2-------- u 1 0,( ) u 1– 0,( ) 2u 0 0,( )–+

Δx2----------------------------------------------------------------------≈

∂2v
∂x∂y------------ v 1 1,( ) v 1 1–,( ) v 1– 1–,( ) v 1– 1,( )–+–

4ΔxΔy--------------------------------------------------------------------------------------------------≈

∂2u
∂y2-------- u 0 1,( ) u 0 1–,( ) 2u 0 0,( )–+

Δy2----------------------------------------------------------------------≈

∂T
∂x------ T 1 0,( ) T 1– 0,( )–

2Δx--------------------------------------------≈

x y,
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(19.163)

Reorganizing by y-values

(19.164)

, (19.165)

(19.166)

(19.167)

u 0 0,( ) 1

2
C1

Δx2---------
C2

Δy2---------+
 
 
 

--------------------------------- C1
u 1 0,( ) u 1– 0,( )+

Δx2-------------------------------------------- C2
u 0 1,( ) u 0 1–,( )+

Δy2--------------------------------------------

μC1 C2+
4ΔxΔy----------------------- v 1 1,( ) v 1 1–,( )– v 1 1–,–( ) v 1– 1,( )–+ Px C3

T 1 0,( ) T 1– 0,( )–
2Δx--------------------------------------------

+

+ + + ,

=

u 0 0,( ) 1

2
C1

Δx2---------
C2

Δy2---------+
 
 
 

---------------------------------
μC1 C2+
4ΔxΔy-----------------------v 1– 1,( )–

C2

Δy2---------u 0 1,( )
μC1 C2+
4ΔxΔy-----------------------v 1 1,( )

C1

Δx2---------u 1– 0,( ) Px
′ 0 0,( )

C1

Δx2---------u 1 0,( )

μC1 C2+
4ΔxΔy-----------------------v 1– 1–,( )

C2

Δy2---------u 0 1–,( )
μC1 C2+
4ΔxΔy-----------------------v 1 1–,( )–

+ +

+ + +

+ +  ,

=

Px
′ 0 0,( ) Px 0 0,( )

C3
2Δx---------- T 1 0,( ) T 1– 0,( )–( )+=

v 0 0,( ) 1

2
C1

Δy2---------
C2

Δx2---------+
 
 
 

--------------------------------- C1
v 0 1,( ) v 0 1–,( )+

Δy2------------------------------------------- C2
v 1 0,( ) v 1– 0,( )+

Δx2-------------------------------------------

μC1 C2+
4ΔyΔx----------------------- u 1 1,( ) u 1– 1,( )– u 1 1–,–( ) u 1 1–,( )–+ Py C3

T 0 1,( ) T 0 1–,( )–
2Δy--------------------------------------------

+

+ + +  ,

=

u 0 0,( ) 1

2
C1

Δx2---------
C2

Δy2---------+
 
 
 

--------------------------------- C1
u 1 0,( ) u 1– 0,( )+

Δx2-------------------------------------------- C2
u 0 1,( ) u 0 1–,( )+

Δy2--------------------------------------------

μC1 C2+
4ΔxΔy----------------------- v 1 1,( ) v 1 1–,( )– v 1 1–,–( ) v 1– 1,( )–+ Px C3

T 1 0,( ) T 1– 0,( )–
2Δx--------------------------------------------

+

+ + + ,

=

Jump to: ,  Commands  Examples



392 GLAD Theory Manual
Reorganizing by y-values

(19.168)

, (19.169)

(19.170)

, , , , (19.171)

(19.172)

, , , . (19.173)

The effective forces due to thermal gradients are independent of displacements and may be computed
outside the scan calculations needed to compute the displacements. 

v 0 0,( ) 1

2
C1

Δy2---------
C2

Δx2---------+
 
 
 

---------------------------------
μC1 C2+
4ΔyΔx-----------------------u 1– 1,( )–

C1

Δy2---------v 0 1,( )
μC1 C2+
4ΔyΔx-----------------------u 1 1,( )

C2

Δx2---------v 1– 0,( ) Py
′ 0 0,( )

C2

Δx2---------v 1 0,( )

μC1 C2+
4ΔyΔx-----------------------u 1– 1–,( )

C1

Δy2---------v 0 1–,( )
μC1 C2+
4ΔyΔx-----------------------u 1 1–,( )–

+ +

+ + +

+ +  ,

=

Py
′ 0 0,( ) Py 0 0,( )

C3
2Δy---------- T 0 1,( ) T 0 1–,( )–( )+=

u 0 0,( ) Du1 v 1 1,( ) v 1 1–,( )– v 1– 1–,( ) v 1– 1,( )–+[ ] Du2 u 0 1,( ) u 0 1–,( )+[ ]
Du3 u 1 0,( ) u 1 0,–( )+[ ] Du4Px

′
+

+ +
{

} ,
=

Du1

μC1 C2+
4ΔxΔy-----------------------

2
C1

Δx2---------
C2

Δy2---------+
 
 
 

---------------------------------= Du2

C2

Δy2---------

2
C1

Δx2---------
C2

Δy2---------+
 
 
 

---------------------------------= Du3

C1

Δx2---------

2
C1

Δx2---------
C2

Δy2---------+
 
 
 

---------------------------------= Du4

C3
2Δx----------

2
C1

Δx2---------
C2

Δy2---------+
 
 
 

---------------------------------=

v 0 0,( ) Dv1 u 1 1,( ) u 1 1–,( )– u 1– 1–,( ) u 1– 1,( )–+[ ] Dv2 v 1 0,( ) v 1– 0,( )+[ ]
Dv3 v 0 1,( ) v 0 1–,–( )+[ ] Dv4Px

′
+

+ +
{

} ,
=

Dv1

μC1 C2+
4ΔxΔy-----------------------

2
C1

Δy2---------
C2

Δx2---------+
 
 
 

---------------------------------= Dv2

C2

Δx2---------

2
C1

Δy2---------
C2

Δx2---------+
 
 
 

---------------------------------= Dv3

C1

Δy2---------

2
C1

Δy2---------
C2

Δx2---------+
 
 
 

---------------------------------= Dv4

C3
2Δy----------

2
C1

Δy2---------
C2

Δx2---------+
 
 
 

---------------------------------=
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19.3.3 Green’s Function Method
We may find the Fourier transform of the Green’s function by solving the differential equations in the

Fourier domain. The Fourier transform of the Green’s function may be used as the transfer function for stress
operating on the Fourier transform of the temperature distribution.

19.3.3.1 Green’s Function Solution of 2D Thermal Stress

, (19.174)

, (19.175)

, (19.176)

. (19.177)

Taking the Fourier transform of both equations we have

, (19.178)

. (19.179)

Collecting variables we have

, (19.180)

, (19.181)

where the coefficients are

, , , (19.182)

1
1 μ+( ) 1 μ–( )

-----------------------------------∂2u
∂x2-------- 1

2 1 μ–( )
-------------------- ∂2v

∂x∂y------------ 1
2 1 μ+( )
---------------------∂2u

∂y2-------- α
1 μ–( )

----------------- x∂
∂T–+ + 0=

1
1 μ+( ) 1 μ–( )

-----------------------------------∂2v
∂y2-------- 1

2 1 μ–( )
-------------------- ∂2u

∂y∂x------------ 1
2 1 μ+( )
---------------------∂2v

∂x2-------- α
1 μ–( )

----------------- y∂
∂T–+ + 0=

∂2u
∂x2-------- 1 μ+

2------------ ∂2v
∂x∂y------------ 1 μ–

2------------∂2u
∂y2--------+ + α 1 μ+( ) x∂

∂T=

∂2v
∂y2-------- 1 μ+

2------------ ∂2u
∂y∂x------------ 1 μ–

2------------∂2v
∂x2--------+ + α 1 μ+( ) y∂

∂T=

ξ2 η21 μ–
2------------+

 
 
 

U ξ η,( ) ξη1 μ+
2------------V ξ η,( )+ jα 1 μ+( )

2π
-----------------------T̃ ξ η,( )ξ–=

η2 ξ21 μ–
2------------+

 
 
 

V ξ η,( ) ηξ1 μ+
2------------U ξ η,( )+ jα 1 μ+( )

2π
-----------------------T̃ ξ η,( )η–=

aU ξ η,( ) bV ξ η,( )+ c=

dV ξ η,( ) bU ξ η,( )+ e=

a ξ2 η21 μ–
2------------+= b ξη1 μ+

2------------= c jα 1 μ+( )
2π

-----------------------T̃ ξ η,( )ξ–=
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, and .

The solution to the two coupled equations is

, . (19.183)

We now have the transfer functions for displacement operating on the Fourier transform of the temperature
distribution

, . (19.184)

The strain-displacement equations (Eq. (19.152)) may also be Fourier transformed. Yielding the transfer
functions for strain to operate on the Fourier transform of the temperature distribution

, (19.185)

, (19.186)

. (19.187)

Given the transfer functions for strain we may use the frequency space form of the stress-strain
equations:

, (19.188)

, (19.189)

. (19.190)

We now have the transfer functions for the components of stress to multiply the Fourier transform of
the temperature distribution:

d η2 ξ21 μ–
2------------+= e jα 1 μ+( )

2π
-----------------------T̃ ξ η,( )η–=

U ξ η,( ) cd be–
ad b2–
------------------= V ξ η,( ) ae cb–

ad b2–
------------------=

U ξ η,( ) jα 1 μ+( )ξ
2π ξ2 η2+( )
-----------------------------T̃ ξ η,( )–= V ξ η,( ) jα 1 μ+( )η

2π ξ2 η2+( )
-----------------------------T̃ ξ η,( )–=

ε̃x ξ η,( ) j2πξU ξ η,( ) α 1 μ+( )ξ2

ξ2 η2+
---------------------------T̃ ξ η,( ),= = ε̃x 0 0,( ) 0=

ε̃y ξ η,( ) j2πηV ξ η,( ) α 1 μ+( )η2

ξ2 η2+
----------------------------T̃ ξ η,( ),= = ε̃y 0 0,( ) 0=

γ̃xy ξ η,( ) j2π ηU ξ η,( ) ξV ξ η,( )+[ ] 2α 1 μ+( )ξη
ξ2 η2+

--------------------------------T̃ ξ η,( ),= = γ̃xy 0 0,( ) 0=

σ̃x ξ η,( ) E
1 μ+( ) 1 μ–( )

----------------------------------- ε̃x ξ η,( ) με̃y ξ η,( )+ EαT̃ ξ η,( )
1 μ–--------------------------–=

σ̃y ξ η,( ) E
1 μ+( ) 1 μ–( )

----------------------------------- με̃x ξ η,( ) ε̃y ξ η,( )+ EαT̃ ξ η,( )
1 μ–--------------------------–=

τ̃xy ξ η,( ) E
2 1 μ+( )
--------------------- γ̃xy ξ η,( )=
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, (19.191)

, (19.192)

. (19.193)

The center point of the transfer function is not well defined. Setting  makes the stress
independent of the average temperature. This makes the Green’s function solution more closely
approximate the case of unconstrained boundaries. Note also that the stress equations are independent of
Poisson’s Ratio μ. 

Consider a one-dimensional distribution . The Fourier transforms of the strain
components are:

, (19.194)

, (19.195)

. (19.196)

19.3.3.2 Green’s Function Solution of 3D Thermal Stress
From Eq. (19.126)

(19.197)

(cyclical for x,y, z). Further

, (19.198)

σ̃x ξ η,( ) Eαη2

ξ2 η2+
-----------------T̃ ξ η,( ),–= σ̃x 0 0,( ) 0=

σ̃y ξ η,( ) Eαξ2

ξ2 η2+
-----------------T̃ ξ η,( ),–= σ̃y 0 0,( ) 0=

τ̃xy ξ η,( ) Eαξη
ξ2 η2+
-----------------T̃ ξ η,( ),= τ̃xy 0 0,( ) 0=

σ̃x 0 0,( ) 0=

T x( ) T0 x2 ω2⁄–( )exp=

σ̃x ξ η,( ) Eαη2

ξ2 η2+
-----------------T̃ ξ( )δ η( ),–= σ̃x 0 0,( ) 0=

σ̃y ξ η,( ) Eαξ2

ξ2 η2+
-----------------T̃ ξ( )δ η( ),–= σ̃y 0 0,( ) 0=

γ̃xy ξ η,( ) Eαξη
ξ2 η2+
-----------------T̃ ξ( )δ η( ) 0,= = γ̃xy 0 0,( ) 0=

1 μ–( )
1 μ+( ) 1 2μ–( )

--------------------------------------∂2u
∂x2-------- 1

2 1 μ+( ) 1 2μ–( )
------------------------------------------ ∂2v

∂x∂y------------ ∂2w
∂x∂z-----------+ 

 

1
2 1 μ+( )
--------------------- ∂2u

∂y2-------- ∂2u
∂z2--------+

 
 
  α

1 2μ–( )
-------------------- x∂

∂T–

+

+ 0 ,=

1 μ–( )∂2u
∂x2-------- 1

2---
∂2v

∂x∂y------------ ∂2w
∂x∂z-----------+

 
 
  1 2μ–

2--------------- ∂2u
∂y2-------- ∂2u

∂z2--------+
 
 
 

+ + α 1 μ+( ) x∂
∂T=
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, (19.199)

. (19.200)

Taking the Fourier transform we have

(19.201)

(19.202)

(19.203)

, (19.204)

, (19.205)

, (19.206)

, (19.207)

, (19.208)

, (19.209)

1 μ–( )∂2v
∂y2-------- 1

2---
∂2w
∂y∂z----------- ∂2u

∂y∂x------------+
 
 
  1 2μ–

2--------------- ∂2v
∂z2-------- ∂2v

∂x2--------+
 
 
 

+ + α 1 μ+( ) y∂
∂T=

1 μ–( )∂2w
∂z2--------- 1

2---
∂2u

∂z∂x----------- ∂2v
∂z∂y-----------+

 
 
  1 2μ–

2--------------- ∂2w
∂x2--------- ∂2w

∂y2---------+
 
 
 

+ + α 1 μ+( ) z∂
∂T=

1 μ–( )ξ2U ξ η ω, ,( ) 1
2--- ξηV ξ η ω, ,( ) ξωW ξ η ω, ,( )+[ ]

1 2μ–
2--------------- η2 ω2+[ ]U ξ η ω, ,( )

+

+ j
2π
------α 1 μ+( )ξT̃ ξ η ω, ,( ) ,–=

1 μ–( )η2V ξ η ω, ,( ) 1
2--- ηωW ξ η ω, ,( ) ηξU ξ η ω, ,( )+[ ]

1 2μ–
2--------------- ω2 ξ2+[ ]V ξ η ω, ,( )

+

+ j
2π
------α 1 μ+( )ηT̃ ξ η ω, ,( ) ,–=

1 μ–( )ω2W ξ η ω, ,( ) 1
2--- ωξU ξ η ω, ,( ) ωηV ξ η ω, ,( )+[ ]

1 2μ–
2--------------- ξ2 η2+[ ]W ξ η ω, ,( )

+

+ j
2π
------α 1 μ+( )ωT̃ ξ η ω, ,( ) ,–=

1 μ–( )ξ2 1 2μ–
2--------------- η2 ω2+( )+ U 1

2---ξηV 1
2---ξωW+ + jα 1 μ+( )ξ

2π
---------------------------T̃–=

1 μ–( )η2 1 2μ–
2--------------- ω2 ξ2+( )+ V 1

2---ηωW 1
2---ηξU+ + jα 1 μ+( )η

2π
---------------------------T̃–=

1 μ–( )ω2 1 2μ–
2--------------- ξ2 η2+( )+ W 1

2---ωξU 1
2---ωξU+ + jα 1 μ+( )ω

2π
----------------------------T̃–=

aU bV cW+ + dT̃=

eU fV gW+ + hT̃=

iU jV kW+ + lT̃=
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, (19.210)

, (19.211)

, (19.212)

, (19.213)

, , , (19.214)

and shear components of strain-displacement are:

, , and . (19.215)

From matrix equation relating strain to stress is the same for both spatial and frequency domains. From Eqs.
(19.104–19.106)

, (19.216)

, (19.217)

, (19.218)

, (19.219)

, (19.220)

U
V
W

fk gj– cj bk– bg cf–
gi ek– ak ci– ce ag–
ej if– bi aj– af be–

a fk jg–( ) e jc bk–( ) i bg cf–( )+ +-------------------------------------------------------------------------------------
d
h
l

T̃=

U dfk dgj– hcj hbk– lbg lcf–+ +
a fk jg–( ) e jc bk–( ) i bg cf–( )+ +-------------------------------------------------------------------------------------T̃ C1T̃= =

V dgi dek– hak hci– lce lag–+ +
a fk jg–( ) e jc bk–( ) i bg cf–( )+ +-------------------------------------------------------------------------------------T̃ C2T̃= =

W dej dif– hbi haj– laf lbe–+ +
a fk jg–( ) e jc bk–( ) i bg cf–( )+ +-------------------------------------------------------------------------------------T̃ C3T̃= =

ε̃x j2πξC1T̃= ε̃y j2πηC2T̃= ε̃z j2πωC3T̃=

γ̃xy j2π ηC1 ξC2+( )T̃= γ̃yz j2π ωC2 ηC3+( )T̃= γ̃zx j2π ξC3 ωC1+( )T̃=

σ̃x
E

1 μ+( ) 1 2μ–( )
-------------------------------------- 1 μ–( )ε̃x με̃y με̃z+ +[ ] EαT̃

1 2μ–( )
--------------------–=

σ̃y
E

1 μ+( ) 1 2μ–( )
-------------------------------------- με̃x 1 μ–( )ε̃y με̃z+ +[ ] EαT̃

1 2μ–( )
--------------------–=

σ̃z
E

1 μ+( ) 1 2μ–( )
-------------------------------------- με̃x με̃y 1 μ–( )εz+ +[ ] EαT̃

1 2μ–( )
--------------------–=

σ̃x ξ η ω, ,( ) Eα η2 ω2+( )
ξ2 η2 ω2+ +
-------------------------------T̃ ξ η ω, ,( )– Hx ξ η ω, ,( )T̃ ξ η ω, ,( ),= = σ̃x 0 0 0, ,( ) 0=

σ̃y ξ η ω, ,( ) Eα ω2 ξ2+( )
ξ2 η2 ω2+ +
------------------------------- T̃ ξ η ω, ,( )– Hy ξ η ω, ,( )T̃ ξ η ω, ,( ),= = σ̃y 0 0 0, ,( ) 0=
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, (19.221)

, (19.222)

, (19.223)

. (19.224)

We note that all transfer functions are hermetian, satisfying the condition:

 and , (19.225)

where  is the Fourier transform of a strictly real function . The Fourier transform of
temperature, , is also hermetian as  is real. The product of two hermetian functions is
hermetian, so all stress terms are hermetian as well.

19.4 Optical Effects Of Stress
The stress induces a local change in index that causes polarization-dependent. We shall assume that the
unstressed material is optically isotropic such as NaCl or glass in the sense that the index is the same in all
directions. In most cases of interest the magnitude of index change is relatively weak (as opposed to a crystal
like calcite). The stress alters the permeability tensor by way of the  photoelastic tensor. Consider the
tensor of perturbations to the electric permeability

. (19.226)

Where the symmetry results in six independent coefficients. We may arrange both the stress and electric
permeability coefficients as a six-element column vector. For cubic (23, m3) material, the equation for
permeability change as a function of stress is[Table 15, Ref. 3]

σ̃z ξ η ω, ,( ) Eα ξ2 η2+( )
ξ2 η2 ω2+ +
------------------------------T̃ ξ η ω, ,( )– Hz ξ η ω, ,( )T̃ ξ η ω, ,( ),= = σ̃z 0 0 0, ,( ) 0=

τ̃xy ξ η ω, ,( ) Eαξη
ξ2 η2 ω2+ +
------------------------------T̃ ξ η ω, ,( ) Hxy ξ η ω, ,( )T̃ ξ η ω, ,( ),= = τ̃xy 0 0 0, ,( ) 0=

τ̃yz ξ η ω, ,( ) Eαηω
ξ2 η2 ω2+ +
------------------------------T̃ ξ η ω, ,( ) Hyz ξ η ω, ,( )T̃ ξ η ω, ,( ),= = τ̃yz 0 0 0, ,( ) 0=

τ̃zx ξ η ω, ,( ) Eαωξ
ξ2 η2 ω2+ +
------------------------------T̃ ξ η ω, ,( ) Hzx ξ η ω, ,( )T̃ ξ η ω, ,( ),= = τ̃zx 0 0 0, ,( ) 0=

Re H ξ η ω, ,( )[ ] Re H ξ– η– ω–, ,( )[ ]= Im H ξ η ω, ,( )[ ] Im H ξ– η– ω–, ,( )[ ]–=

H ξ η ω, ,( ) h x y z, ,( )
T̃ ξ η ω, ,( ) T x y z, ,( )

6 6×

ε ε 0( )
Δε1 Δε6 Δε5

Δε6 Δε2 Δε4

Δε5 Δε4 Δε3

+=
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. (19.227)

As compared with cubic material, the isotropic material has  and , so we can write
the equations for cubic material and apply the coefficient simplifications for isotropic material.

Given  we have  so we have the matrix equation

. (19.228)

In general in anisotropic media the electric field is not orthogonal to the phase propagation vector k (the
normal to the wavefront). However for the small perturbations typical of stress birefringence imposed on an
isotropic medium, the rotation is quite small. We may estimate the rotation by

. (19.229)

For perturbations on the order of  or less (typically the stress-induced perturbations are quite small)
the rotation of the electric vector E relative to k is essentially negligible and may be neglected. This also
implies that the walk-off is negligible. Under these assumptions, we may calculate the effect of the index
perturbation tensor on any arbitrary state of polarization designated by the vector  by rotating into the
principle coordinate system of . We may use a method such as the Jacobi transformation to decompose

 into diagonal form:

. (19.230)

Given propagation along the z-axis the effect of stress birefringence is

(19.231)

Δε1

Δε2

Δε3

Δε4

Δε5

Δε6

c11 c12 c13 0 0 0
c13 c11 c12 0 0 0
c12 c13 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

σ1

σ2

σ3

σ4

σ5

σ6

=

c13 c12= c44 c11 c12–=

ε 1 n2⁄= Δε 2Δn– n0
3⁄=

Δn 1
2---n0

3τσ–=

RΔε
εI Δε+

det εI Δε+----------------------------=

10 4–

a 0( )
Δn

Δn

Δn R 1–
Δn1 0 0

0 Δn2 0
0 0 Δn3

R=

e z( ) R 1–

e
j2π

λ------n1z
0 0

0 e
j2π

λ------n2z
0

0 0 e
j2π

λ------n3z

Re 0( )=
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and stress birefringence may be considered as a combination of optical path difference and shearing (walk-
off) aberrations. At each local point the general index may be defined in terms of the index ellipsoid

, (19.232)

where  are in an arbitrarily rotated coordinate system, defined by three rotation angles, so that the
state of index is defined by six coefficients.

For an arbitrary propagation direction, there are two eigenstates of polarization with, in general, two
distinct indices of refraction corresponding to eigenvalues. In the case that we know the two eigenstates of
polarization  and associated indices of refraction  and , then we may write

, . (19.233)

where

. (19.234)

We can write the matrix equation for the transformation of the two polarization states as

. (19.235)

Any two orthogonal vectors may be propagated by rotating them into the principle coordinate system
for application of the media effects and then rotating back out: 

. (19.236)

x′2

nx
2------ y′2

ny
2------ z′2

nz
2------+ + 1=

x′ y′ z′, ,( )

e1 e2 n1 n2

e1 z( ) e1 0( )e
j2π

λ------n1z
= e2 z( ) e2 0( )e

j2π
λ------n2z

=

e
ex

ey

ez

=

e1 z( ) e2 z( )

e
j2π

λ------n1z
0 0

0 e
j2π

λ------n2z
0

0 0 e
j2π

λ------n3z

e1 0( ) e2 0( )=

a1 z( ) a2 z( ) R 1–

e
j2π

λ
------n1z

0 0

0 e
j2π

λ
------n2z

0

0 0 e
j2π

λ
------n3z

R a1 0( ) a2 0( )=
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We may express the media matrix as a matrix exponential and evaluate the matrix exponential as a
Taylor series

. (19.237)

Exponentiation of a diagonal matrix is a special case, so we have the relationship:

. (19.238)

The expression for propagation of any arbitrary polarization state a is

, (19.239)

where R represents a rotation into the diagonalized coordinate system and the index matrix in the orthogonal
coordinate system is

. (19.240)

For a diagonal matrix 

. (19.241)

So that the arbitrary vector a may be propagated by

, (19.242)

where the rotation matrices are moved into the exponent. The expression for the general index matrix N is

. (19.243)

eA I A A
2!----- A

3!----- …+ + + +=

e
j2πz

λ---------

n1 0 0

0 n2 0

0 0 n3

e
j2π

λ------n1z
0 0

0 e
j2π

λ------n2z
0

0 0 e
j2π

λ------n3z

=

a z( ) R 1– e
j2πz

λ---------

n1 0 0

0 n2 0

0 0 n3 Ra 0( ) R 1– ej2πz
λ---------N0Ra 0( )= =

N0

n1 0 0
0 n2 0
0 0 n3

=

N0

R 1– ej2πz
λ---------N0R ej2πz

λ---------R 1– N0R=

a z( ) ej2πz
λ---------R 1– N0Ra 0( )=

N R 1– N0R=
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As any symmetric matrix N may be represented in the diagonal form with rotation matrices as indicated in
Eq. (19.243), we may write the propagation equation in terms of the general index matrix for any arbitrary
polarization state a:

, (19.244)

noting that for a symmetric matrix the order of multiplication is unimportant. We see from Eq. (19.244) that
it is not strictly necessary to solve for the eigenvectors in order to propagate through the anisotropic
medium.

In the particular case of weak birefringence, we may write the index matrix in terms of perturbation
values:

, where . (19.245)

The matrix exponential of Eq. (19.244) may be written in terms of an ordinary scalar exponential of  and
an exponential of the perturbation matrix Δ as defined in Eq. (19.245). Combining Eqs. (19.244) and
(19.245),

. (19.246)

For light propagating primarily along the z-axis, we may simplify the 3 × 3 matrix Δ by taking advantage
of the fact that

(19.247)

and the anisotropy is weak. For these conditions we need consider only the upper 2 × 2 submatrix of N to
form , as the z-component remains negligible for weak index perturbations,

, (19.248)

where we have indicated a notation in x-y-z. We can identify the 2 × 2 perturbation submatrix as: 

a z( ) ej2πz
λ---------Na 0( ) a 0( )ej2πz

λ---------N= =

N n0I Δ+= Δ
Δ1 Δ6 Δ5

Δ6 Δ2 Δ4

Δ5 Δ4 Δ3

=

n0

a z( ) a 0( )ej2πz
λ---------n0ej2πz

λ---------Δ=

a
ax

ay

0

=

N2

N2 n0I Δ1 Δ6

Δ6 Δ2

+ Δx Δxy

Δxy Δy

= =
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. (19.249)

We only need to solve for the three coefficients , , and . The polarization transformation may be
written as a Jones calculus operator:

. (19.250)

If the index perturbations are weak and/or the propagation length is short, the matrix exponential may be
evaluated using only the first order term of the Taylor series:

, (19.251)

. (19.252)

In this case, the Jones calculus operator for index perturbation is

. (19.253)

19.4.1 Photoelastic Tensor
The index perturbation matrix may be calculated from the stress tensor by the photoelastic tensor, a 6 ×

6 matrix. For a material that is isotropic, only two independent photoelastic coefficients are needed for the
isotropic material. The photoelastic tensor for cubic material is

. (19.254)

For isotropic material only two coefficients are needed

Δ2
Δx Δxy

Δxy Δy

=

Δx Δy Δxy

J e
j2πz

λ---------Δ2
=

e
j2πz

λ---------Δ2
I j2πz

λ---------Δ2+≈

a z( ) ej2πz
λ---------n0 I j2πz

λ---------Δ2+
 
 
 

a 0( )≈

J I j2πz
λ---------Δ2+≈

Δx

Δy

Δz

Δyz

Δzx

Δxy

n0
3

2-----–

εx

εy

εz

εyz

εzx

εxy

n0
3

2-----–

c11 c12 c13 0 0 0
c13 c11 c12 0 0 0
c12 c13 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

σx

σy

σz

τyz

τzx

τxy

= =
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. (19.255)

As compared with cubic material, the isotropic material has  and , so we can
write the equations for cubic material and apply the coefficient simplifications for isotropic material. Since
we only need , , and , we may simplify Eq. (19.255):

. (19.256)

Equation Eq. (19.256) is a linear equation, consisting of coefficients applied to the four stress values.
We may apply the same equation in frequency space for cubic crystals

. (19.257)

For isotropic material

. (19.258)

A linear equation of hermetian functions is also hermetian, so , , and  are hermetian and , ,
and  are guaranteed to be real. The resulting inverse Fourier transform yields the index matrix for all
points in the volume:

Δx

Δy

Δz

Δyz

Δzx

Δxy

n0
3

2-----–

εx

εy

εz

εyz

εzx

εxy

n0
3

2-----–

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c11 c12– 0 0
0 0 0 0 c11 c12– 0
0 0 0 0 0 c11 c12–

σx

σy

σz

τyz

τzx

τxy

= =

c13 c12= c44 c11 c12–=

Δx Δy Δxy

Δx

Δy

Δxy

n0
3

2-----–
c11 c12 c13 0
c13 c11 c12 0
0 0 0 c44

σx

σy

σxy

τxy

=

Δ̃x

Δ̃y

Δ̃xy

n0
3

2-----–
c11 c12 c13 0
c13 c11 c12 0
0 0 0 c44

σ̃x

σ̃y

σ̃xy

τ̃xy

=

Δ̃x

Δ̃y

Δ̃xy

n0
3

2-----–
c11 c12 c12 0
c12 c11 c12 0
0 0 0 c11 c12–

σ̃x

σ̃y

σ̃xy

τ̃xy

=

Δ̃x Δ̃y Δ̃xy Δx Δy
Δxy
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. (19.259)

The effect of the index variation is integrated over the volume along the z-direction:

. (19.260)

19.4.2 Simplifying the 3D Calculations
Equation (19.260) indicates that the optical effect of the birefringence is due to the integration of the

index matrix along the z-axis.

. (19.261)

Hence we do not actually need the definition of index matrix over the volume but only the z-integrated
value. The integrated value may be calculated much more easily as only 2D calculations are required.

Let the z-integrated temperature

, (19.262)

in units of degree-centimeters. We form the two-dimensional Fourier transform  by setting ω = 0,

, (19.263)

, (19.264)

, (19.265)

, (19.266)

. (19.267)

Δ x y z, ,( )
Δx x y z, ,( ) Δxy x y z, ,( )
Δxy x y z, ,( ) Δz x y z, ,( )

=

a z( ) a 0( )e
j2πz

λ---------
n0Le

j

2π Δ x y z, ,( ) zd
0

L


λ------------------------------------------

=

ΔL x y,( ) Δ x y x, ,( ) zd
0

L

=

TL x y,( ) T x y z, ,( ) zd
0

L

=

T̃L ξ η,( )

σ̃x ξ η,( ) Eαη2

ξ2 η2+
-----------------TL̃ ξ η,( )– Hx ξ η,( )TL̃ ξ η,( ),= = σ̃x 0 0,( ) 0=

σ̃y ξ η,( ) Eαξ2

ξ2 η2+
-----------------TL̃ ξ η,( )– Hy ξ η,( )TL̃ ξ η,( ),= = σ̃y 0 0,( ) 0=

τ̃xy ξ η,( ) Eαξη
ξ2 η2+
-----------------TL̃ ξ η,( ) Hxy ξ η,( )TL̃ ξ η,( ),= = τ̃xy 0 0,( ) 0=

τ̃yz ξ η,( ) 0=

τ̃zx ξ η,( ) 0=
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The stress-induced index coefficients are found with the reduced photoelastic tensor for cubic material as
before and applied to the fourier transform of the z-integrated temperature distribution

. (19.268)

Equation (19.268) gives the two-dimensional index perturbation matrix yielding the OPD matrix .
Expanding the matrix calculations into the three equations:

, (19.269)

, (19.270)

. (19.271)

Photoelastic coefficients for some cubic materials are given in Table 19.1. 
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Table. 19.1. Photoelastic coefficients for some cubic materials (units =  m2/newton). From J. F. Nye, 
Physical Properties of Crystals[3].
Crystal Class

sodium chloride m3m 0.25 1.46 1.46 -0.85
diamond m3m -0.43 0.37 0.37 -0.27

Δ̃xL

Δ̃yL

Δ̃xyL
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c11 c12 0
c13 c11 0
0 0 c44
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Hy
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ΔL
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Eαn0
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2 ξ2 η2+( )
-------------------------- c12ξ2 c11η2+( )T̃L=

Δ̃yL
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Δ̃xyL

Eαn0
3

2 ξ2 η2+( )
--------------------------c44ξη– T̃L=

10 12–
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20. Integration of Geometrical and Physical Optics

This chapter outlines a method of combining geometrical and physical optics. We shall be primarily
concerned with well-behaved, i.e., imaging optical systems. Such systems image a region in object space
into image space. Generally the best imaging is found for a limited range of object conjugate (the object to
lens distance) and form a limited range of object angle. The imaging is never perfect, suffering from
truncation of the beam by the apertures and aberrations of the optical system.

The imaging property of the well-behaved system defines the approach for modeling well-behaved
optical systems from their geometrical optics behavior. If the imaging were perfect, then the input beam
would be geometrically modified into an output beam in image space. Considered between the conjugate
planes, the ideal system simply applies magnification, change of direction, and change of phase radius of
curvature—no diffraction effects, no aberration, and not aperture clipping. The real optical system,
necessarily imperfect is a perturbation from the ideal system.

The representation of the physical optics beam is somewhat more complex than is generally used in
geometrical optic calculations. We can, however, establish how all aspects of the physical optics are
transformed by the optical system. In the GLAD program the optical beam may be represented by

, , r, K, , , ω, (20.1)

complex amplitude distribution of in the -direction,

complex amplitude distribution of in the -direction,

r location of the center of the beam in global coordinates,

K coordinate system for the beam directions ,

Radii of reference surface,

ω frequency, establishes wavelength.

Figure 20.1 illustrates schematically the transformations due to imaging optical system. The changes
are summarized as

aberration ,

aberration ,

ai x y,( ) bj x y,( ) Rx Ry

ai x y,( ) î

bj x y,( ) ĵ

K î ĵ k̂=

Rx Ry,

ai x y,( ) eiW x y,( )ai x y,( )

aj x y,( ) eiW x y,( )aj x y,( )
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coordinate shift ,

rotation and parity change ,

phase radius change ,

aperture stop diffraction to and from aperture stop.

where  is the phase aberration,  is the shift position between object and image,  represents the
rotation of the ray coordinate system (and parity change for odd-numbered mirror systems), and ABCD is
the paraxial system in the x- or y-direction.

In many lens designs there is a well defined aperture stop (at least for the on-axis optical beam), unlike
general physical optics systems where clipping apertures may be more arbitrarily located. In addition to the
aperture stop, an off-axis beam may be clipped by apertures ahead of or following the aperture stop. Figure
20.2 illustrates a representative system. Generally, there is a well-defined region where the beam is
expanded and the elements are relatively close, such that the elements are effectively in the near-field with
respect to each other. This is an important condition for geometrical design to be valid. Apertures at different
axial points in the expanded region are effectively co-located in terms of diffraction calculations. The

Fig. 20.1. The global, ray, vertex, and surface coordinate system.

r r Δr+

K RK

R
A B

R---+

C D
R----+

--------------

W x y,( ) Δr R
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various apertures in the expanded region may be collapsed into the entrance pupil. The aperture stop may
be accurately included by using diffraction propagation from the object to the entrance pupil, applying the
entrance pupil aperture as the aperture stop and including phase aberrations, and propagating back to the
object point. The object point may be transformed to its conjugate in image space by a simple ABCD matrix
of the form:

, (20.2)

where A = M (M is the magnification), D = 1/M, and C represents the optical power. B = 0 indicates there is
no diffraction propagation in going between conjugate points.

In the general cae, tilts and decenters are allowed and the aberrations are calculated correspondingly.
See Fig. 20.3.

The aberrations may be determined by probing the system with rays. The rays are constructed to be
normal to the reference surface. Ideally the rays are constructed to be normal to the wavefront but in order
to probe the system with rays it is generally not necessary to make a distinction between the wavefront
normals and the reference surface normals.

Fig. 20.2. The aberrations of the optical system are determined by probing with rays. Generally, the rays will be 
started at some intermediate point on the beam in object space and terminating in image space. The system may be 
represented by an aberration plate and the paraxial optics behavior.
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Ending pointStarting point

ABCD A 0
C D

=
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Fig. 20.3. In the general case, the equivalent optical system must include global coordinate shifts and rotations to 
take into account of the displacement of the starting point to the ending point.
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Zernike 83
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parametric interactions in 171
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